Organic photovoltaics (OPVs) technology now offers power conversion efficiency (PCE) of over 18% and is one of the main emerging photovoltaic technologies. In such devices, titanium dioxide (TiOx) has been vastly used as an electron extraction layer, typically showing unwanted charge-extraction barriers and the need for light-soaking. In the present work, using advanced photoemission spectroscopies, we investigate the electronic interplay at the interface between low-temperature-sputtered TiOx and C70 acceptor fullerene molecules. We show that defect states in the band gap of TiOx are quenched by C70 while an interfacial state appears. This new interfacial state is expected to support the favorable energy band alignment observed, showing a perfect match of transport levels, and thus barrier-free extraction of charges, making low-temperature-sputtered TiOx a good candidate for the next generation of organic solar cells.

Deciphering Electron Interplay at the Fullerene/Sputtered TiOxInterface: A Barrier-Free Electron Extraction for Organic Solar Cells

Cossaro A.;
2021-01-01

Abstract

Organic photovoltaics (OPVs) technology now offers power conversion efficiency (PCE) of over 18% and is one of the main emerging photovoltaic technologies. In such devices, titanium dioxide (TiOx) has been vastly used as an electron extraction layer, typically showing unwanted charge-extraction barriers and the need for light-soaking. In the present work, using advanced photoemission spectroscopies, we investigate the electronic interplay at the interface between low-temperature-sputtered TiOx and C70 acceptor fullerene molecules. We show that defect states in the band gap of TiOx are quenched by C70 while an interfacial state appears. This new interfacial state is expected to support the favorable energy band alignment observed, showing a perfect match of transport levels, and thus barrier-free extraction of charges, making low-temperature-sputtered TiOx a good candidate for the next generation of organic solar cells.
2021
Pubblicato
File in questo prodotto:
File Dimensione Formato  
C60TiOx_AppMatInter_2021.pdf

Accesso chiuso

Descrizione: Articolo principale
Tipologia: Documento in Versione Editoriale
Licenza: Copyright Editore
Dimensione 1.2 MB
Formato Adobe PDF
1.2 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
2991583_C60TiOx_AppMatInter_2021-Post_print.pdf

Open Access dal 20/04/2022

Tipologia: Bozza finale post-referaggio (post-print)
Licenza: Digital Rights Management non definito
Dimensione 1.59 MB
Formato Adobe PDF
1.59 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11368/2991583
Citazioni
  • ???jsp.display-item.citation.pmc??? 0
  • Scopus 10
  • ???jsp.display-item.citation.isi??? 10
social impact