The need to decarbonize the shipping sector is leading to a growing interest in fuel cell-based propulsion systems. While Polymer Electrolyte Membrane Fuel Cells (PEMFC) represent one of the most promising and mature technologies for onboard implementation, they are still prone to remarkable degradation. The same problem is also affecting Lithium-ion batteries (LIB), which are usually coupled with PEMFC in hybrid powertrains. By including the combined degradation effects in an optimization strategy, the best compromise between costs and PEMFC/LIB lifetime could be determined. However, this is still a challenging yet crucial aspect, rarely addressed in the literature and rarely yet explored. To fill this gap, a health-conscious optimization is here proposed for the long-term minimization of costs and PEMFC/LIB degradation. Results show that a holistic multi-objective optimization allows a 185% increase of PEMFC/LIB lifetime with respect to a fuel-consumption-minimization-only approach. With the progressive ageing of PEMFC/LIB, the hybrid propulsion system modifies the energy management strategy to limit the increase of the daily operation cost. Comparing the optimization results at the beginning and the end of the plant lifetime, daily operation costs are increased by 73% and hydrogen consumption by 29%. The proposed methodology is believed to be a useful tool, able to give insights into the effective costs involved in the long-term operation of this new type of propulsion system.

Health-Conscious Optimization of Long-Term Operation for Hybrid PEMFC Ship Propulsion Systems

Dall’Armi, Chiara;Pivetta, Davide;Taccani, Rodolfo
2021-01-01

Abstract

The need to decarbonize the shipping sector is leading to a growing interest in fuel cell-based propulsion systems. While Polymer Electrolyte Membrane Fuel Cells (PEMFC) represent one of the most promising and mature technologies for onboard implementation, they are still prone to remarkable degradation. The same problem is also affecting Lithium-ion batteries (LIB), which are usually coupled with PEMFC in hybrid powertrains. By including the combined degradation effects in an optimization strategy, the best compromise between costs and PEMFC/LIB lifetime could be determined. However, this is still a challenging yet crucial aspect, rarely addressed in the literature and rarely yet explored. To fill this gap, a health-conscious optimization is here proposed for the long-term minimization of costs and PEMFC/LIB degradation. Results show that a holistic multi-objective optimization allows a 185% increase of PEMFC/LIB lifetime with respect to a fuel-consumption-minimization-only approach. With the progressive ageing of PEMFC/LIB, the hybrid propulsion system modifies the energy management strategy to limit the increase of the daily operation cost. Comparing the optimization results at the beginning and the end of the plant lifetime, daily operation costs are increased by 73% and hydrogen consumption by 29%. The proposed methodology is believed to be a useful tool, able to give insights into the effective costs involved in the long-term operation of this new type of propulsion system.
2021
Pubblicato
File in questo prodotto:
File Dimensione Formato  
energies-14-03813 (1).pdf

accesso aperto

Descrizione: Articolo
Tipologia: Documento in Versione Editoriale
Licenza: Creative commons
Dimensione 1.74 MB
Formato Adobe PDF
1.74 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11368/2992745
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 14
  • ???jsp.display-item.citation.isi??? 14
social impact