Background: Precision medicine is based on molecular and genotypic patient characterization to define specific target treatment. BRAF mutation is an oncogenic driver, and the Cancer Genome Atlas has identified BRAF mutations in different cancer types. Tumor type agnostic therapy is based on targeting genomic alterations, regardless of tumor origin. In this context, novel therapeutic agents including BRAF and MEK inhibitors based on the molecular landscape in solid tumors have been investigated. Case presentation, Case 1: The first case is chemotherapy-refractory, BRAF V600E mutated intrahepaticcholangiocarcinoma treated with vemurafenib and cobimetinib as third line therapy. In this setting the dual BRAF and MEK inhibition resulted in improved progression-free survival and quality of life; Case 2: The second case shows aBRAF G466A mutated Bellini duct carcinoma (BDC), treated with dabrafenib and trametinib in second line therapy. The disease remained under control for 11 months after the first relapse. Discussion: In the literature there is strong evidence that melanoma, colorectal cancer, non small cell lung cancer and anaplastic thyroid cancer with BRAF mutations are good targets for BRAF/MEK pathway inhibitors. The VE-BASKET and ROAR basket trials explored the efficacy of vemurafenib and the combination of dabrafenib/trametinib, respectively, in BRAF V600 mutation-positive cancers other than melanoma, papillary thyroid cancer, colorectal cancer and non small cell lung cancer. Within the concept of tumor type agnostic therapy, we decided to treat our BRAF-mutated tumors with the association of BRAF and MEK inhibitors. Conclusions: Our results confirm the emerging importance of molecular tumor profiling for the successful management of cancer, and the potential of BRAF-targeted therapy in the treatment of rare solid tumors with poor prognosis and no clinical benefit from systemic therapies with.

Tumor Type Agnostic Therapy Carrying BRAF Mutation: Case Reports and Review of Literature

Bernocchi, Ottavia
;
Roviello, Giandomenico;Generali, Daniele
2021-01-01

Abstract

Background: Precision medicine is based on molecular and genotypic patient characterization to define specific target treatment. BRAF mutation is an oncogenic driver, and the Cancer Genome Atlas has identified BRAF mutations in different cancer types. Tumor type agnostic therapy is based on targeting genomic alterations, regardless of tumor origin. In this context, novel therapeutic agents including BRAF and MEK inhibitors based on the molecular landscape in solid tumors have been investigated. Case presentation, Case 1: The first case is chemotherapy-refractory, BRAF V600E mutated intrahepaticcholangiocarcinoma treated with vemurafenib and cobimetinib as third line therapy. In this setting the dual BRAF and MEK inhibition resulted in improved progression-free survival and quality of life; Case 2: The second case shows aBRAF G466A mutated Bellini duct carcinoma (BDC), treated with dabrafenib and trametinib in second line therapy. The disease remained under control for 11 months after the first relapse. Discussion: In the literature there is strong evidence that melanoma, colorectal cancer, non small cell lung cancer and anaplastic thyroid cancer with BRAF mutations are good targets for BRAF/MEK pathway inhibitors. The VE-BASKET and ROAR basket trials explored the efficacy of vemurafenib and the combination of dabrafenib/trametinib, respectively, in BRAF V600 mutation-positive cancers other than melanoma, papillary thyroid cancer, colorectal cancer and non small cell lung cancer. Within the concept of tumor type agnostic therapy, we decided to treat our BRAF-mutated tumors with the association of BRAF and MEK inhibitors. Conclusions: Our results confirm the emerging importance of molecular tumor profiling for the successful management of cancer, and the potential of BRAF-targeted therapy in the treatment of rare solid tumors with poor prognosis and no clinical benefit from systemic therapies with.
File in questo prodotto:
File Dimensione Formato  
bernocchi o.pdf

accesso aperto

Descrizione: Articolo principale
Tipologia: Documento in Versione Editoriale
Licenza: Creative commons
Dimensione 585.24 kB
Formato Adobe PDF
585.24 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11368/2993050
Citazioni
  • ???jsp.display-item.citation.pmc??? 1
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 4
social impact