Physical implementation of asynchronous cellular automata networks has shown stably random oscillations under certain conditions. We present two simple mathematical models to describe transient and stationary regimes. The models are based on simple assumptions taking into account several aspects such as number of inputs of the cellular automata, rule balance, and technological frequency limitation. Numerical simulations reveal the possibility of chaotic dynamics of the average transition rate of the cellular automata in a stationary regime. With physical implementations on FPGA (field programmable gate array), preliminary experimental results show very good qualitative agreement with model’s prediction and numerical simulations. Several networks of interconnected 5-input asynchronous cellular automata have been successfully implemented in different FPGA devices, and we present some preliminary experimental results. This work aims at finding fundamental mechanisms of randomness such that the collective behavior of the cellular automata system does not depend on physical implementation details.

Physical implementation of asynchronous cellular automata networks: mathematical models and preliminary experimental results

Luis Guillermo, Garcia Ordonez.
Software
;
Werner Oswaldo Florian Samayoa
Software
2021-01-01

Abstract

Physical implementation of asynchronous cellular automata networks has shown stably random oscillations under certain conditions. We present two simple mathematical models to describe transient and stationary regimes. The models are based on simple assumptions taking into account several aspects such as number of inputs of the cellular automata, rule balance, and technological frequency limitation. Numerical simulations reveal the possibility of chaotic dynamics of the average transition rate of the cellular automata in a stationary regime. With physical implementations on FPGA (field programmable gate array), preliminary experimental results show very good qualitative agreement with model’s prediction and numerical simulations. Several networks of interconnected 5-input asynchronous cellular automata have been successfully implemented in different FPGA devices, and we present some preliminary experimental results. This work aims at finding fundamental mechanisms of randomness such that the collective behavior of the cellular automata system does not depend on physical implementation details.
2021
31-lug-2021
Pubblicato
File in questo prodotto:
File Dimensione Formato  
Cicuttin2021_Article_PhysicalImplementationOfAsynch.pdf

Accesso chiuso

Tipologia: Documento in Versione Editoriale
Licenza: Copyright Editore
Dimensione 3.89 MB
Formato Adobe PDF
3.89 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11368/2993335
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 2
social impact