Context. The analysis of the latest release of the Apache Point Observatory Galactic Evolution Experiment project (APOGEE DR16) data suggests the existence of a clear distinction between two sequences of disc stars at different Galactocentric distances in the [α/Fe] versus [Fe/H] abundance ratio space: the so-called high-α sequence, classically associated with an old population of stars in the thick disc with high average [α/Fe], and the low-α sequence, which mostly comprises relatively young stars in the thin disc with low average [α/Fe]. Aims. We aim to constrain a multi-zone two-infall chemical evolution model designed for regions at different Galactocentric distances using measured chemical abundances from the APOGEE DR16 sample. Methods. We performed a Bayesian analysis based on a Markov chain Monte Carlo method to fit our multi-zone two-infall chemical evolution model to the APOGEE DR16 data. Results. An inside-out formation of the Galaxy disc naturally emerges from the best fit of our two-infall chemical-evolution model to APOGEE-DR16: Inner Galactic regions are assembled on shorter timescales compared to the external ones. In the outer disc (with radii R  >  6 kpc), the chemical dilution due to a late accretion event of gas with a primordial chemical composition is the main driver of the [Mg/Fe] versus [Fe/H] abundance pattern in the low-α sequence. In the inner disc, in the framework of the two-infall model, we confirm the presence of an enriched gas infall in the low-α phase as suggested by chemo-dynamical models. Our Bayesian analysis of the recent APOGEE DR16 data suggests a significant delay time, ranging from ∼3.0 to 4.7 Gyr, between the first and second gas infall events for all the analysed Galactocentric regions. The best fit model reproduces several observational constraints such as: (i) the present-day stellar and gas surface density profiles; (ii) the present-day abundance gradients; (iii) the star formation rate profile; and (iv) the solar abundance values. Conclusions. Our results propose a clear interpretation of the [Mg/Fe] versus [Fe/H] relations along the Galactic discs. The signatures of a delayed gas-rich merger which gives rise to a hiatus in the star formation history of the Galaxy are impressed in the [Mg/Fe] versus [Fe/H] relation, determining how the low-α stars are distributed in the abundance space at different Galactocentric distances, which is in agreement with the finding of recent chemo-dynamical simulations.

APOGEE DR16: A multi-zone chemical evolution model for the Galactic disc based on MCMC methods

Spitoni E.
;
Vincenzo F.;Matteucci F.;Palla M.;Grisoni V.;Calura F.
2021-01-01

Abstract

Context. The analysis of the latest release of the Apache Point Observatory Galactic Evolution Experiment project (APOGEE DR16) data suggests the existence of a clear distinction between two sequences of disc stars at different Galactocentric distances in the [α/Fe] versus [Fe/H] abundance ratio space: the so-called high-α sequence, classically associated with an old population of stars in the thick disc with high average [α/Fe], and the low-α sequence, which mostly comprises relatively young stars in the thin disc with low average [α/Fe]. Aims. We aim to constrain a multi-zone two-infall chemical evolution model designed for regions at different Galactocentric distances using measured chemical abundances from the APOGEE DR16 sample. Methods. We performed a Bayesian analysis based on a Markov chain Monte Carlo method to fit our multi-zone two-infall chemical evolution model to the APOGEE DR16 data. Results. An inside-out formation of the Galaxy disc naturally emerges from the best fit of our two-infall chemical-evolution model to APOGEE-DR16: Inner Galactic regions are assembled on shorter timescales compared to the external ones. In the outer disc (with radii R  >  6 kpc), the chemical dilution due to a late accretion event of gas with a primordial chemical composition is the main driver of the [Mg/Fe] versus [Fe/H] abundance pattern in the low-α sequence. In the inner disc, in the framework of the two-infall model, we confirm the presence of an enriched gas infall in the low-α phase as suggested by chemo-dynamical models. Our Bayesian analysis of the recent APOGEE DR16 data suggests a significant delay time, ranging from ∼3.0 to 4.7 Gyr, between the first and second gas infall events for all the analysed Galactocentric regions. The best fit model reproduces several observational constraints such as: (i) the present-day stellar and gas surface density profiles; (ii) the present-day abundance gradients; (iii) the star formation rate profile; and (iv) the solar abundance values. Conclusions. Our results propose a clear interpretation of the [Mg/Fe] versus [Fe/H] relations along the Galactic discs. The signatures of a delayed gas-rich merger which gives rise to a hiatus in the star formation history of the Galaxy are impressed in the [Mg/Fe] versus [Fe/H] relation, determining how the low-α stars are distributed in the abundance space at different Galactocentric distances, which is in agreement with the finding of recent chemo-dynamical simulations.
2021
Pubblicato
File in questo prodotto:
File Dimensione Formato  
aa39864-20.pdf

accesso aperto

Descrizione: Articolo principale
Tipologia: Documento in Versione Editoriale
Licenza: Digital Rights Management non definito
Dimensione 3.17 MB
Formato Adobe PDF
3.17 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11368/2993475
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 59
  • ???jsp.display-item.citation.isi??? 57
social impact