The paper deals with the distributed minimum sharing problem: a set of decision-makers compute the minimum of some local quantities of interest in a distributed and decentralized way by exchanging information through a communication network. We propose an adjustable approximate solution which enjoys several properties of crucial importance in applications. In particular, the proposed solution has good decentralization properties and it is scalable in that the number of local variables does not grow with the size or topology of the communication network. Moreover, a global and uniform (both in the initial time and in the initial conditions) asymptotic stability result is provided towards a steady state which can be made arbitrarily close to the sought minimum. Exact asymptotic convergence can be recovered at the price of losing uniformity with respect to the initial time.

A Distributed Methodology for Approximate Uniform Global Minimum Sharing

T. Parisini
Membro del Collaboration Group
2021-01-01

Abstract

The paper deals with the distributed minimum sharing problem: a set of decision-makers compute the minimum of some local quantities of interest in a distributed and decentralized way by exchanging information through a communication network. We propose an adjustable approximate solution which enjoys several properties of crucial importance in applications. In particular, the proposed solution has good decentralization properties and it is scalable in that the number of local variables does not grow with the size or topology of the communication network. Moreover, a global and uniform (both in the initial time and in the initial conditions) asymptotic stability result is provided towards a steady state which can be made arbitrarily close to the sought minimum. Exact asymptotic convergence can be recovered at the price of losing uniformity with respect to the initial time.
File in questo prodotto:
File Dimensione Formato  
Bin_Parisini_Automatica_Published_Version_2021.pdf

accesso aperto

Descrizione: Articolo pubblicato
Tipologia: Documento in Versione Editoriale
Licenza: Creative commons
Dimensione 1.07 MB
Formato Adobe PDF
1.07 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11368/2993767
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact