Echo-enabled harmonic generation free-electron lasers (EEHG FELs) are promising candidates to produce fully coherent soft x-ray pulses by virtue of efficient high-harmonic frequency up-conversion from ultraviolet lasers. The ultimate spectral limit of EEHG, however, remains unclear, because of the broadening and distortions induced in the output spectrum by residual broadband energy modulations in the electron beam. We present a mathematical description of the impact of incoherent (broadband) energy modulations on the bunching spectrum produced by the microbunching instability through both the accelerator and the EEHG line. The model is in agreement with a systematic experimental characterization of the FERMI EEHG FEL in the photon energy range 130–210 eV. We find that amplification of electron beam energy distortions primarily in the EEHG dispersive sections explains an observed reduction of the FEL spectral brightness proportional to the EEHG harmonic number. Local maxima of the FEL spectral brightness and of the spectral stability are found for a suitable balance of the dispersive sections’ strength and the first seed laser pulse energy. Such characterization provides a benchmark for user experiments and future EEHG implementations designed to reach shorter wavelengths.

Characterization of soft x-ray echo-enabled harmonic generation free-electron laser pulses in the presence of incoherent electron beam energy modulations

Perosa, G.;
2021-01-01

Abstract

Echo-enabled harmonic generation free-electron lasers (EEHG FELs) are promising candidates to produce fully coherent soft x-ray pulses by virtue of efficient high-harmonic frequency up-conversion from ultraviolet lasers. The ultimate spectral limit of EEHG, however, remains unclear, because of the broadening and distortions induced in the output spectrum by residual broadband energy modulations in the electron beam. We present a mathematical description of the impact of incoherent (broadband) energy modulations on the bunching spectrum produced by the microbunching instability through both the accelerator and the EEHG line. The model is in agreement with a systematic experimental characterization of the FERMI EEHG FEL in the photon energy range 130–210 eV. We find that amplification of electron beam energy distortions primarily in the EEHG dispersive sections explains an observed reduction of the FEL spectral brightness proportional to the EEHG harmonic number. Local maxima of the FEL spectral brightness and of the spectral stability are found for a suitable balance of the dispersive sections’ strength and the first seed laser pulse energy. Such characterization provides a benchmark for user experiments and future EEHG implementations designed to reach shorter wavelengths.
2021
Pubblicato
https://journals.aps.org/prab/abstract/10.1103/PhysRevAccelBeams.24.080702
File in questo prodotto:
File Dimensione Formato  
PhysRevAccelBeams.24.080702.pdf

accesso aperto

Tipologia: Documento in Versione Editoriale
Licenza: Creative commons
Dimensione 1.16 MB
Formato Adobe PDF
1.16 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11368/2994175
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 3
social impact