In this article we derive a doubling inequality at the boundary for solutions to the Kirchhoff-Love isotropic plate’s equation satisfying supported boundary conditions. To this end, we combine the use of a suitable conformal mapping which flattens the boundary and a reflection argument which guarantees the needed regularity of the extended solution. We finally apply inequalities of Carleman type in order to derive the result. The latter implies Strong Unique Continuation Property at the boundary (SUCPB).

Doubling inequality at the boundary for the Kirchhoff-Love plate's equation with supported conditions

Edi Rosset;Eva Sincich;
2021-01-01

Abstract

In this article we derive a doubling inequality at the boundary for solutions to the Kirchhoff-Love isotropic plate’s equation satisfying supported boundary conditions. To this end, we combine the use of a suitable conformal mapping which flattens the boundary and a reflection argument which guarantees the needed regularity of the extended solution. We finally apply inequalities of Carleman type in order to derive the result. The latter implies Strong Unique Continuation Property at the boundary (SUCPB).
File in questo prodotto:
File Dimensione Formato  
2021_MRSV_RIMUT.pdf

Accesso chiuso

Tipologia: Documento in Versione Editoriale
Licenza: Creative commons
Dimensione 329.5 kB
Formato Adobe PDF
329.5 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11368/2994226
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact