Purpose: To test the diagnostic performance of cardiovascular magnetic resonance (CMR) tissue-tracking (TT) to detect the presence of late gadolinium enhancement (LGE) in patients with a diagnosis of myocardial infarction (MI) or myocarditis (MYO), preserved left ventricular ejection fraction (LVEF) and no visual regional wall motion abnormalities (RWMA). Methods: We selected consecutive CMR studies of 50 MI, 50 MYO and 96 controls. Receiving operating characteristic (ROC) curve and net reclassification index (NRI) analyses were used to assess the predictive ability and the incremental diagnostic yield of 2D and 3D TT-derived strain parameters for the detection of LGE and to measure the best cut-off values of strain parameters. Results: Overall, cases showed significantly reduced 2D global longitudinal strain (2D-GLS) values compared with controls (−20.1 ± 3.1% vs −21.6 ± 2.7%; p = 0.0008). 2D-GLS was also significantly reduced in MYO patients compared with healthy controls (−19.7 ± 2.9% vs −21.9 ± 2.4%; p = 0.0001). 3D global radial strain (3D-GRS) was significantly reduced in MI patients compared with controls with risk factors (34.3 ± 11.8% vs 40.3 ± 12.5%, p = 0.024) Overall, 2D-GLS yielded good diagnostic accuracy for the detection of LGE in the MYO subgroup (AUROC 0.79; NRI (95% CI) = 0.6 (0.3, 1.02) p = 0.0004), with incremental predictive value beyond risk factors and LV function parameters (p for AUROC difference = 0.048). In the MI subgroup, 2D-GRS (AUROC 0.81; NRI (95% CI) = 0.56 (0.17, 0.95) p = 0.004), 3D-GRS (AUROC 0.82; NRI (95% CI) = 0.57 (0.17, 0.97) p = 0.006) and 3D global circumferential strain (3D-GCS) (AUROC 0.81; NRI (95% CI) = 0.62 (0.22, 1.01) p = 0.002) emerged as potential markers of disease. The best cut-off for 2D-GLS was −21.1%, for 2D- and 3D-GRS were 39.1% and 37.7%, respectively, and for 3D-GCS was −16.4%. Conclusions: At CMR-tissue tracking analysis, 2D-GLS was a significant predictor of LGE in patients with myocarditis but preserved LVEF and no visual RWMA. Both 2D- and 3D-GRS and 2D-GCS yielded good diagnostic accuracy for LGE detection in patients with previous MI but preserved LVEF and no visual RWMA.

Tissue-tracking in the assessment of late gadolinium enhancement in myocarditis and myocardial infarction

Doimo S.
;
Ricci F.;Sinagra G.;
2020-01-01

Abstract

Purpose: To test the diagnostic performance of cardiovascular magnetic resonance (CMR) tissue-tracking (TT) to detect the presence of late gadolinium enhancement (LGE) in patients with a diagnosis of myocardial infarction (MI) or myocarditis (MYO), preserved left ventricular ejection fraction (LVEF) and no visual regional wall motion abnormalities (RWMA). Methods: We selected consecutive CMR studies of 50 MI, 50 MYO and 96 controls. Receiving operating characteristic (ROC) curve and net reclassification index (NRI) analyses were used to assess the predictive ability and the incremental diagnostic yield of 2D and 3D TT-derived strain parameters for the detection of LGE and to measure the best cut-off values of strain parameters. Results: Overall, cases showed significantly reduced 2D global longitudinal strain (2D-GLS) values compared with controls (−20.1 ± 3.1% vs −21.6 ± 2.7%; p = 0.0008). 2D-GLS was also significantly reduced in MYO patients compared with healthy controls (−19.7 ± 2.9% vs −21.9 ± 2.4%; p = 0.0001). 3D global radial strain (3D-GRS) was significantly reduced in MI patients compared with controls with risk factors (34.3 ± 11.8% vs 40.3 ± 12.5%, p = 0.024) Overall, 2D-GLS yielded good diagnostic accuracy for the detection of LGE in the MYO subgroup (AUROC 0.79; NRI (95% CI) = 0.6 (0.3, 1.02) p = 0.0004), with incremental predictive value beyond risk factors and LV function parameters (p for AUROC difference = 0.048). In the MI subgroup, 2D-GRS (AUROC 0.81; NRI (95% CI) = 0.56 (0.17, 0.95) p = 0.004), 3D-GRS (AUROC 0.82; NRI (95% CI) = 0.57 (0.17, 0.97) p = 0.006) and 3D global circumferential strain (3D-GCS) (AUROC 0.81; NRI (95% CI) = 0.62 (0.22, 1.01) p = 0.002) emerged as potential markers of disease. The best cut-off for 2D-GLS was −21.1%, for 2D- and 3D-GRS were 39.1% and 37.7%, respectively, and for 3D-GCS was −16.4%. Conclusions: At CMR-tissue tracking analysis, 2D-GLS was a significant predictor of LGE in patients with myocarditis but preserved LVEF and no visual RWMA. Both 2D- and 3D-GRS and 2D-GCS yielded good diagnostic accuracy for LGE detection in patients with previous MI but preserved LVEF and no visual RWMA.
File in questo prodotto:
File Dimensione Formato  
1-s2.0-S0730725X20300424-main.pdf

Accesso chiuso

Tipologia: Documento in Versione Editoriale
Licenza: Copyright Editore
Dimensione 1.65 MB
Formato Adobe PDF
1.65 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11368/2994940
Citazioni
  • ???jsp.display-item.citation.pmc??? 0
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 2
social impact