Introduction: Early prediction of long-term outcomes in patients resuscitated after cardiac arrest (CA) is still challenging. Guidelines suggested a multimodal approach combining multiple predictors. We evaluated whether the combination of the electroencephalography (EEG) reactivity, somatosensory evoked potentials (SSEPs) cortical complex and Gray to White matter ratio (GWR) on brain computed tomography (CT) at different temperatures could predict survival and good outcome at hospital discharge and six months after the event. Methods: We performed a retrospective cohort study including consecutive adult, non-traumatic patients resuscitated from out-of-hospital CA who remained comatose on admission to our intensive care unit from 2013 to 2017. We acquired SSEPs and EEGs during the treatment at 36 degrees C and after rewarming at 37 degrees C, Gray to white matter ratio (GWR) was calculated on the brain computed tomography scan performed within six hours of the hospital admission. We primarily hypothesized that SSEP was associated with favor-able functional outcome at distance and secondarily that SSEP provides independent information from EEG and CT. Outcomes were evaluated using the Cerebral Performance Category (CPC) scale at six months from discharge. Results: Of 171 resuscitated patients, 75 were excluded due to missing data or uninterpretable neurophysiological findings. EEG reactivity at 37 degrees C has been shown the best single predictor of good out-come (AUC 0.803) while N20P25 was the best single predictor for survival at each time point. (AUC 0.775 at discharge and AUC 0.747 at six months follow up). The predictive value of a model including EEG reactivity, average GWR, and SSEP N20P25 amplitude was superior (AUC 0.841 for survival and 0.920 for good out-come) to any combination of two tests or any single test. Conclusions: Our study, in which life-sustaining treatments were never suspended, suggests SSEP cortical complex N20P25, after normothermia and off sedation, is a reliable predictor for survival at any time. When SSEP cortical complex N20P25 is added into a model with GWR average and EEG reactivity, the predictivity for good outcome and survival at distance is superior than each single test alone.

Multimodal Long-Term Predictors of Outcome in Out of Hospital Cardiac Arrest Patients Treated with Targeted Temperature Management at 36 °C

Roman-Pognuz, Erik
Writing – Original Draft Preparation
;
Poillucci, Gabriele;Lucangelo, Umberto;Berlot, Giorgio;Manganotti, Paolo;
2021-01-01

Abstract

Introduction: Early prediction of long-term outcomes in patients resuscitated after cardiac arrest (CA) is still challenging. Guidelines suggested a multimodal approach combining multiple predictors. We evaluated whether the combination of the electroencephalography (EEG) reactivity, somatosensory evoked potentials (SSEPs) cortical complex and Gray to White matter ratio (GWR) on brain computed tomography (CT) at different temperatures could predict survival and good outcome at hospital discharge and six months after the event. Methods: We performed a retrospective cohort study including consecutive adult, non-traumatic patients resuscitated from out-of-hospital CA who remained comatose on admission to our intensive care unit from 2013 to 2017. We acquired SSEPs and EEGs during the treatment at 36 degrees C and after rewarming at 37 degrees C, Gray to white matter ratio (GWR) was calculated on the brain computed tomography scan performed within six hours of the hospital admission. We primarily hypothesized that SSEP was associated with favor-able functional outcome at distance and secondarily that SSEP provides independent information from EEG and CT. Outcomes were evaluated using the Cerebral Performance Category (CPC) scale at six months from discharge. Results: Of 171 resuscitated patients, 75 were excluded due to missing data or uninterpretable neurophysiological findings. EEG reactivity at 37 degrees C has been shown the best single predictor of good out-come (AUC 0.803) while N20P25 was the best single predictor for survival at each time point. (AUC 0.775 at discharge and AUC 0.747 at six months follow up). The predictive value of a model including EEG reactivity, average GWR, and SSEP N20P25 amplitude was superior (AUC 0.841 for survival and 0.920 for good out-come) to any combination of two tests or any single test. Conclusions: Our study, in which life-sustaining treatments were never suspended, suggests SSEP cortical complex N20P25, after normothermia and off sedation, is a reliable predictor for survival at any time. When SSEP cortical complex N20P25 is added into a model with GWR average and EEG reactivity, the predictivity for good outcome and survival at distance is superior than each single test alone.
Pubblicato
https://www.mdpi.com/2077-0383/10/6/1331
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8005130/
File in questo prodotto:
File Dimensione Formato  
jcm-10-01331.pdf

accesso aperto

Tipologia: Documento in Versione Editoriale
Licenza: Creative commons
Dimensione 799.31 kB
Formato Adobe PDF
799.31 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11368/2995303
Citazioni
  • ???jsp.display-item.citation.pmc??? 4
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 4
social impact