The forthcoming generation of galaxy redshift surveys will sample the large-scale structure of the Universe over unprecedented volumes with high-density tracers. This advancement will make robust measurements of three-point clustering statistics possible. In preparation for this improvement, we investigate how several methodological choices can influence inferences based on the bispectrum about galaxy bias and shot noise. We first measure the real-space bispectrum of dark-matter haloes extracted from 298 N-body simulations covering a volume of approximately 1000 Gpc3. We then fit a series of theoretical models based on tree-level perturbation theory to the numerical data. To achieve this, we estimate the covariance matrix of the measurement errors by using 10,000 mock catalogues generated with the PINOCCHIO code. We study how the model constraints are influenced by the binning strategy for the bispectrum configurations and by the form of the likelihood function. We also use Bayesian model-selection techniques to single out the optimal theoretical description of our data. We find that a three-parameter bias model combined with Poissonian shot noise is necessary to model the halo bispectrum up to scales of kmax 0.08 Mpc-1, although fitting formulae that relate the bias parameters can be helpful to reduce the freedom of the model without compromising accuracy. Our data clearly disfavour local Eulerian and local Lagrangian bias models and do not require corrections to Poissonian shot noise. We anticipate that model-selection diagnostics will be particularly useful to extend the analysis to smaller scales as, in this case, the number of model parameters will grow significantly large.

Toward a robust inference method for the galaxy bispectrum: Likelihood function and model selection

Sefusatti E.;Monaco P.;
2020

Abstract

The forthcoming generation of galaxy redshift surveys will sample the large-scale structure of the Universe over unprecedented volumes with high-density tracers. This advancement will make robust measurements of three-point clustering statistics possible. In preparation for this improvement, we investigate how several methodological choices can influence inferences based on the bispectrum about galaxy bias and shot noise. We first measure the real-space bispectrum of dark-matter haloes extracted from 298 N-body simulations covering a volume of approximately 1000 Gpc3. We then fit a series of theoretical models based on tree-level perturbation theory to the numerical data. To achieve this, we estimate the covariance matrix of the measurement errors by using 10,000 mock catalogues generated with the PINOCCHIO code. We study how the model constraints are influenced by the binning strategy for the bispectrum configurations and by the form of the likelihood function. We also use Bayesian model-selection techniques to single out the optimal theoretical description of our data. We find that a three-parameter bias model combined with Poissonian shot noise is necessary to model the halo bispectrum up to scales of kmax 0.08 Mpc-1, although fitting formulae that relate the bias parameters can be helpful to reduce the freedom of the model without compromising accuracy. Our data clearly disfavour local Eulerian and local Lagrangian bias models and do not require corrections to Poissonian shot noise. We anticipate that model-selection diagnostics will be particularly useful to extend the analysis to smaller scales as, in this case, the number of model parameters will grow significantly large.
Pubblicato
https://iopscience.iop.org/article/10.1088/1475-7516/2020/03/056
File in questo prodotto:
File Dimensione Formato  
Toward a robust inference method for the galaxy.pdf

non disponibili

Tipologia: Documento in Versione Editoriale
Licenza: Copyright Editore
Dimensione 4.36 MB
Formato Adobe PDF
4.36 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Toward a robust inference method ARXIV.pdf

accesso aperto

Tipologia: Documento in Pre-print
Licenza: Digital Rights Management non definito
Dimensione 4.02 MB
Formato Adobe PDF
4.02 MB Adobe PDF Visualizza/Apri
2997751_Toward a robust inference method for the galaxy-Post_print.pdf

accesso aperto

Tipologia: Bozza finale post-referaggio (post-print)
Licenza: Digital Rights Management non definito
Dimensione 4.26 MB
Formato Adobe PDF
4.26 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11368/2997751
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 10
  • ???jsp.display-item.citation.isi??? 19
social impact