We study projective schemes arising from eigenvectors of tensors, called eigenschemes. After some general results, we give a birational description of the variety parametrizing eigenschemes of general ternary symmetric tensors, and we compute its dimension. Moreover, we characterize the locus of triples of homogeneous polynomials defining the eigenscheme of a ternary symmetric tensor. Our results allow us to implement algorithms to check whether a given set of points is the eigenscheme of a symmetric tensor and to reconstruct the tensor. Finally, we give a geometric characterization of all reduced zero-dimensional eigenschemes. The techniques we use rely on both classical and modern complex projective algebraic geometry.

Eigenschemes of Ternary Tensors

Beorchia, Valentina
Membro del Collaboration Group
;
Galuppi, Francesco
Membro del Collaboration Group
;
2021-01-01

Abstract

We study projective schemes arising from eigenvectors of tensors, called eigenschemes. After some general results, we give a birational description of the variety parametrizing eigenschemes of general ternary symmetric tensors, and we compute its dimension. Moreover, we characterize the locus of triples of homogeneous polynomials defining the eigenscheme of a ternary symmetric tensor. Our results allow us to implement algorithms to check whether a given set of points is the eigenscheme of a symmetric tensor and to reconstruct the tensor. Finally, we give a geometric characterization of all reduced zero-dimensional eigenschemes. The techniques we use rely on both classical and modern complex projective algebraic geometry.
File in questo prodotto:
File Dimensione Formato  
2814304-2-32.pdf

Accesso chiuso

Tipologia: Documento in Versione Editoriale
Licenza: Copyright Editore
Dimensione 10.85 MB
Formato Adobe PDF
10.85 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
2998393_2814304-2-32-Post_print.pdf

accesso aperto

Tipologia: Bozza finale post-referaggio (post-print)
Licenza: Digital Rights Management non definito
Dimensione 11.45 MB
Formato Adobe PDF
11.45 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11368/2998393
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 7
  • ???jsp.display-item.citation.isi??? 7
social impact