partycls is a Python framework for cluster analysis of systems of interacting particles. By grouping particles that share similar structural or dynamical properties, partycls enables rapid and unsupervised exploration of the system’s relevant features. It provides descriptors suitable for applications in condensed matter physics and integrates the necessary tools of unsupervised learning, such as dimensionality reduction, into a streamlined workflow. Through a simple and expressive interface, partycls allows one to open a trajectory file, perform a clustering based on the selected structural descriptor, and analyze and save the results with only a few lines of code.

partycls: A Python package for structural clustering

Coslovich, Daniele
2021-01-01

Abstract

partycls is a Python framework for cluster analysis of systems of interacting particles. By grouping particles that share similar structural or dynamical properties, partycls enables rapid and unsupervised exploration of the system’s relevant features. It provides descriptors suitable for applications in condensed matter physics and integrates the necessary tools of unsupervised learning, such as dimensionality reduction, into a streamlined workflow. Through a simple and expressive interface, partycls allows one to open a trajectory file, perform a clustering based on the selected structural descriptor, and analyze and save the results with only a few lines of code.
File in questo prodotto:
File Dimensione Formato  
10.21105.joss.03723.pdf

accesso aperto

Tipologia: Documento in Versione Editoriale
Licenza: Creative commons
Dimensione 1.97 MB
Formato Adobe PDF
1.97 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11368/2998765
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact