Label-free SERS is a powerful bio-analytical technique in which molecular fingerprinting is combined with localized surface plasmons (LSPs) on metal surfaces to achieve high sensitivity. Silver and gold colloids are among the most common nanostructured substrates used in SERS, but since protein-rich samples such as serum or plasma can hinder the SERS effect due to protein–substrate interactions, they often require a deproteinization step. Moreover, SERS methods based on metal colloids often suffer from a poor reproducibility. Here, we propose a paper-based SERS sampling method in which unprocessed human serum samples are first soaked on paper strips (0.4 × 2 cm2), and then mixed with colloidal silver nanoparticles by centrifugation to obtain a Centrifugal Silver Plasmonic Paper (CSPP). The CSPP methodology has the potential to become a promising tool in bioanalytical SERS applications: it uses common colloidal substrates but without the need for sample deproteinization, while having a good reproducibility both in terms of overall spectral shape (r > 0.96) and absolute intensity (RSD < 10%). Moreover, this methodology allows SERS analysis more than one month after serum collection on the paper strip, facilitating storage and handling of clinical samples (including shipping from clinical sites to labs).

Label-free Surface Enhanced Raman Scattering (SERS) on Centrifugal Silver Plasmonic Paper (CSPP): A Novel Methodology for Unprocessed Biofluids Sampling and Analysis

Esposito, Alessandro;Bonifacio, Alois;Sergo, Valter;Fornasaro, Stefano
2021-01-01

Abstract

Label-free SERS is a powerful bio-analytical technique in which molecular fingerprinting is combined with localized surface plasmons (LSPs) on metal surfaces to achieve high sensitivity. Silver and gold colloids are among the most common nanostructured substrates used in SERS, but since protein-rich samples such as serum or plasma can hinder the SERS effect due to protein–substrate interactions, they often require a deproteinization step. Moreover, SERS methods based on metal colloids often suffer from a poor reproducibility. Here, we propose a paper-based SERS sampling method in which unprocessed human serum samples are first soaked on paper strips (0.4 × 2 cm2), and then mixed with colloidal silver nanoparticles by centrifugation to obtain a Centrifugal Silver Plasmonic Paper (CSPP). The CSPP methodology has the potential to become a promising tool in bioanalytical SERS applications: it uses common colloidal substrates but without the need for sample deproteinization, while having a good reproducibility both in terms of overall spectral shape (r > 0.96) and absolute intensity (RSD < 10%). Moreover, this methodology allows SERS analysis more than one month after serum collection on the paper strip, facilitating storage and handling of clinical samples (including shipping from clinical sites to labs).
2021
21-nov-2021
Pubblicato
File in questo prodotto:
File Dimensione Formato  
biosensors-11-00467-v2.pdf

accesso aperto

Descrizione: Articolo principale
Tipologia: Documento in Versione Editoriale
Licenza: Creative commons
Dimensione 2.62 MB
Formato Adobe PDF
2.62 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11368/2999195
Citazioni
  • ???jsp.display-item.citation.pmc??? 0
  • Scopus 7
  • ???jsp.display-item.citation.isi??? 7
social impact