In this work we prove that ordered single-layer MoS2 can be grown epitaxially on Ag(110), despite the different crystalline geometry of adsorbate and substrate. A comprehensive investigation of electronic and structural features of this interface is carried out by combining several techniques. Photoelectron diffraction experiments show that only two mirror crystalline domains coexist in equal amount in the grown layer. Angle-resolved valence band photoelectron spectroscopy shows that MoS2 undergoes a semiconductor-to-metal transition. Low-energy electron diffraction and scanning-tunneling microscopy experiments reveal the formation of a commensurate moire superlattice at the interface, which implies an anisotropic uniaxial strain of the MoS2 crystalline lattice of ca. 3% in the [110] direction of the Ag(110) surface. These outcomes suggest that the epitaxial growth on anisotropic substrates might be an effective and scalable method to generate a controlled and homogeneous strain in MoS2 and possibly other transition-metal dichalcogenides.
Anisotropic strain in epitaxial single-layer molybdenum disulfide on Ag(110)
Bignardi, Luca
Membro del Collaboration Group
;Bana, HarshMembro del Collaboration Group
;Travaglia, ElisabettaMembro del Collaboration Group
;Baraldi, AlessandroMembro del Collaboration Group
;
2021-01-01
Abstract
In this work we prove that ordered single-layer MoS2 can be grown epitaxially on Ag(110), despite the different crystalline geometry of adsorbate and substrate. A comprehensive investigation of electronic and structural features of this interface is carried out by combining several techniques. Photoelectron diffraction experiments show that only two mirror crystalline domains coexist in equal amount in the grown layer. Angle-resolved valence band photoelectron spectroscopy shows that MoS2 undergoes a semiconductor-to-metal transition. Low-energy electron diffraction and scanning-tunneling microscopy experiments reveal the formation of a commensurate moire superlattice at the interface, which implies an anisotropic uniaxial strain of the MoS2 crystalline lattice of ca. 3% in the [110] direction of the Ag(110) surface. These outcomes suggest that the epitaxial growth on anisotropic substrates might be an effective and scalable method to generate a controlled and homogeneous strain in MoS2 and possibly other transition-metal dichalcogenides.File | Dimensione | Formato | |
---|---|---|---|
Bignardi_Nanoscale_2021.pdf
Accesso chiuso
Descrizione: main article
Tipologia:
Documento in Versione Editoriale
Licenza:
Copyright Editore
Dimensione
3.72 MB
Formato
Adobe PDF
|
3.72 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Supplementary material.pdf
Accesso chiuso
Descrizione: Materiale supplementare
Tipologia:
Altro materiale allegato
Licenza:
Copyright Editore
Dimensione
3.02 MB
Formato
Adobe PDF
|
3.02 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
2999199_Bignardi_Nanoscale_2021-Post_print.pdf
Open Access dal 28/10/2022
Tipologia:
Bozza finale post-referaggio (post-print)
Licenza:
Digital Rights Management non definito
Dimensione
4.27 MB
Formato
Adobe PDF
|
4.27 MB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.