In this work we prove that ordered single-layer MoS2 can be grown epitaxially on Ag(110), despite the different crystalline geometry of adsorbate and substrate. A comprehensive investigation of electronic and structural features of this interface is carried out by combining several techniques. Photoelectron diffraction experiments show that only two mirror crystalline domains coexist in equal amount in the grown layer. Angle-resolved valence band photoelectron spectroscopy shows that MoS2 undergoes a semiconductor-to-metal transition. Low-energy electron diffraction and scanning-tunneling microscopy experiments reveal the formation of a commensurate moire superlattice at the interface, which implies an anisotropic uniaxial strain of the MoS2 crystalline lattice of ca. 3% in the [110] direction of the Ag(110) surface. These outcomes suggest that the epitaxial growth on anisotropic substrates might be an effective and scalable method to generate a controlled and homogeneous strain in MoS2 and possibly other transition-metal dichalcogenides.

Anisotropic strain in epitaxial single-layer molybdenum disulfide on Ag(110)

Bignardi, Luca
Membro del Collaboration Group
;
Bana, Harsh
Membro del Collaboration Group
;
Travaglia, Elisabetta
Membro del Collaboration Group
;
Baraldi, Alessandro
Membro del Collaboration Group
;
2021

Abstract

In this work we prove that ordered single-layer MoS2 can be grown epitaxially on Ag(110), despite the different crystalline geometry of adsorbate and substrate. A comprehensive investigation of electronic and structural features of this interface is carried out by combining several techniques. Photoelectron diffraction experiments show that only two mirror crystalline domains coexist in equal amount in the grown layer. Angle-resolved valence band photoelectron spectroscopy shows that MoS2 undergoes a semiconductor-to-metal transition. Low-energy electron diffraction and scanning-tunneling microscopy experiments reveal the formation of a commensurate moire superlattice at the interface, which implies an anisotropic uniaxial strain of the MoS2 crystalline lattice of ca. 3% in the [110] direction of the Ag(110) surface. These outcomes suggest that the epitaxial growth on anisotropic substrates might be an effective and scalable method to generate a controlled and homogeneous strain in MoS2 and possibly other transition-metal dichalcogenides.
27-ott-2021
Pubblicato
https://pubs.rsc.org/en/content/articlelanding/2021/nr/d1nr05584d
File in questo prodotto:
File Dimensione Formato  
Bignardi_Nanoscale_2021.pdf

non disponibili

Descrizione: main article
Tipologia: Documento in Versione Editoriale
Licenza: Copyright Editore
Dimensione 3.72 MB
Formato Adobe PDF
3.72 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Supplementary material.pdf

non disponibili

Descrizione: Materiale supplementare
Tipologia: Altro materiale allegato
Licenza: Copyright Editore
Dimensione 3.02 MB
Formato Adobe PDF
3.02 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
2999199_Bignardi_Nanoscale_2021-Post_print.pdf

embargo fino al 27/10/2022

Tipologia: Bozza finale post-referaggio (post-print)
Licenza: Digital Rights Management non definito
Dimensione 4.27 MB
Formato Adobe PDF
4.27 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11368/2999199
Citazioni
  • ???jsp.display-item.citation.pmc??? 0
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 2
social impact