Herein, we compared the ability of linear and cyclic peptides generated in silico to target different protein sites: internal pockets and solvent-exposed sites. We selected human lysozyme (HuL) as a model target protein combined with the computational evolution of linear and cyclic peptides. The sequence evolution of these peptides was based on the PARCE algorithm. The generated peptides were screened based on their aqueous solubility and HuL binding affinity. The latter was evaluated by means of scoring functions and atomistic molecular dynamics (MD) trajectories in water, which allowed prediction of the structural features of the protein-peptide complexes. The computational results demonstrated that cyclic peptides constitute the optimal choice for solvent exposed sites, while both linear and cyclic peptides are capable of targeting the HuL pocket effectively. The most promising binders found in silico were investigated experimentally by surface plasmon resonance (SPR), nuclear magnetic resonance (NMR), and electrospray ionization mass spectrometry (ESI-MS) techniques. All tested peptides displayed dissociation constants in the micromolar range, as assessed by SPR; however, both NMR and ESI-MS suggested multiple binding modes, at least for the pocket binding peptides. A detailed NMR analysis confirmed that both linear and cyclic pocket peptides correctly target the binding site they were designed for.

Insights on peptide topology in the computational design of protein ligands: The example of lysozyme binding peptides

Fortuna S.
2021-01-01

Abstract

Herein, we compared the ability of linear and cyclic peptides generated in silico to target different protein sites: internal pockets and solvent-exposed sites. We selected human lysozyme (HuL) as a model target protein combined with the computational evolution of linear and cyclic peptides. The sequence evolution of these peptides was based on the PARCE algorithm. The generated peptides were screened based on their aqueous solubility and HuL binding affinity. The latter was evaluated by means of scoring functions and atomistic molecular dynamics (MD) trajectories in water, which allowed prediction of the structural features of the protein-peptide complexes. The computational results demonstrated that cyclic peptides constitute the optimal choice for solvent exposed sites, while both linear and cyclic peptides are capable of targeting the HuL pocket effectively. The most promising binders found in silico were investigated experimentally by surface plasmon resonance (SPR), nuclear magnetic resonance (NMR), and electrospray ionization mass spectrometry (ESI-MS) techniques. All tested peptides displayed dissociation constants in the micromolar range, as assessed by SPR; however, both NMR and ESI-MS suggested multiple binding modes, at least for the pocket binding peptides. A detailed NMR analysis confirmed that both linear and cyclic pocket peptides correctly target the binding site they were designed for.
File in questo prodotto:
File Dimensione Formato  
40_Cantarutti_Lysozyme.pdf

Accesso chiuso

Tipologia: Documento in Versione Editoriale
Licenza: Copyright Editore
Dimensione 5.58 MB
Formato Adobe PDF
5.58 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
2999240_40_Cantarutti_Lysozyme-Post_post.pdf

Open Access dal 17/09/2022

Tipologia: Bozza finale post-referaggio (post-print)
Licenza: Digital Rights Management non definito
Dimensione 6.1 MB
Formato Adobe PDF
6.1 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11368/2999240
Citazioni
  • ???jsp.display-item.citation.pmc??? 0
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 2
social impact