Carbon-based materials (CBMs), such as graphene, nanodiamonds, carbon fibers, and carbon dots, have attracted a great deal scientific attention due to their potential as biomedical tools. Following exposure, particularly intravenous injection, these nanomaterials can be recognized by immune cells. Such interactions could be modulated by the different physicochemical properties of the materials (e.g. structure, size, and chemical functions), by either stimulating or suppressing the immune response. However, a harmonized cutting-edge approach for the classification of these materials based not only on their physicochemical parameters but also their immune properties has been missing. The European Commission-funded G-IMMUNOMICS and CARBO-IMmap projects aimed to fill this gap, developing a functional pipeline for the qualitative and quantitative immune characterization of graphene, graphene-related materials (GRMs), and other CBMs. The goal was to open breakthrough perspectives for the definition of the immune profiles of these materials. Here, we summarize our methodological approach, key results, and the necessary multidisciplinary expertise ranging across various fields, from material chemistry to engineering, immunology, toxicology, and systems biology. G-IMMUNOMICS, as a partnering project of the Graphene Flagship, the largest scientific research initiative on graphene worldwide, also complemented the studies performed in the Flagship on health and environmental impact of GRMs. Finally, we present the nanoimmunity-by-design concept, developed within the projects, which can be readily applied to other 2D materials. Overall, the G-IMMUNOMICS and CARBO-IMmap projects have provided new insights on the immune impact of GRMs and CBMs, thus laying the foundation for their safe use and future translation in medicine.

Graphene, other carbon nanomaterials and the immune system: Toward nanoimmunity-by-design

Gazzi A.;Fusco L.;Istif A.;Prato M.;Bianco A.;Delogu L. G.
2020

Abstract

Carbon-based materials (CBMs), such as graphene, nanodiamonds, carbon fibers, and carbon dots, have attracted a great deal scientific attention due to their potential as biomedical tools. Following exposure, particularly intravenous injection, these nanomaterials can be recognized by immune cells. Such interactions could be modulated by the different physicochemical properties of the materials (e.g. structure, size, and chemical functions), by either stimulating or suppressing the immune response. However, a harmonized cutting-edge approach for the classification of these materials based not only on their physicochemical parameters but also their immune properties has been missing. The European Commission-funded G-IMMUNOMICS and CARBO-IMmap projects aimed to fill this gap, developing a functional pipeline for the qualitative and quantitative immune characterization of graphene, graphene-related materials (GRMs), and other CBMs. The goal was to open breakthrough perspectives for the definition of the immune profiles of these materials. Here, we summarize our methodological approach, key results, and the necessary multidisciplinary expertise ranging across various fields, from material chemistry to engineering, immunology, toxicology, and systems biology. G-IMMUNOMICS, as a partnering project of the Graphene Flagship, the largest scientific research initiative on graphene worldwide, also complemented the studies performed in the Flagship on health and environmental impact of GRMs. Finally, we present the nanoimmunity-by-design concept, developed within the projects, which can be readily applied to other 2D materials. Overall, the G-IMMUNOMICS and CARBO-IMmap projects have provided new insights on the immune impact of GRMs and CBMs, thus laying the foundation for their safe use and future translation in medicine.
Pubblicato
https://iopscience.iop.org/article/10.1088/2515-7639/ab9317/pdf
File in questo prodotto:
File Dimensione Formato  
Graphene, other carbon nanomaterials and the.pdf

accesso aperto

Tipologia: Documento in Versione Editoriale
Licenza: Creative commons
Dimensione 5.03 MB
Formato Adobe PDF
5.03 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11368/2999265
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 25
  • ???jsp.display-item.citation.isi??? 23
social impact