Ceria-doped titania photocatalysts (ceria loading 0.25–5.0 wt%) were synthesized by hydrothermal methods for water remediation. Nanotubes (CeTNTx) and nanoparticles (CeTNPx) were obtained. Ceria doping was applied to tune the electronic properties of nanostructured titania, boosting its photocatalytic activity. CeTNT nanostructures contained anatase as the only titania phase, whereas the CeTNP series consisted of both anatase and rutile polymorphs. The Ce addition induced a decrease in the energy gap, allowing enhancement of visible light harvesting. The photodegradation of methylene blue, MB, in aqueous solution was chosen to study the influence of the morphology and the ceria loading on the photocatalytic response, under UV and solar light. Both CeO2–TiO2 nanoparticles and nanotubes were found to be very active under UV light. The highest MB degradation rates were obtained for the 0.25 wt% CeO2 doping, for both nanotubes and nanoparticles (0.123 and 0.146 min1, respectively), able to photodegrade completely the dye after 120 min. The two samples are stable after a 3-cycle reusability test. The photo-response under simulated solar light confirmed that doping titania with ceria allows harvesting visible light absorption, enhancing its photoactivity. A maximum efficiency of 85% under simulated sunlight at a degradation rate of 0.054 min-1 was obtained. Transient photoluminescence confirmed that MB acts as a charge scavenger for the composite system. These results pointed out ceria-doped titania nanostructures as a promising class of photocatalysts for the degradation of dyes and other hazardous organic compounds in wastewater.

Ceria doping boosts methylene blue photodegradation in titania nanostructures

Chiara Alberoni;Elisa Moretti
2021-01-01

Abstract

Ceria-doped titania photocatalysts (ceria loading 0.25–5.0 wt%) were synthesized by hydrothermal methods for water remediation. Nanotubes (CeTNTx) and nanoparticles (CeTNPx) were obtained. Ceria doping was applied to tune the electronic properties of nanostructured titania, boosting its photocatalytic activity. CeTNT nanostructures contained anatase as the only titania phase, whereas the CeTNP series consisted of both anatase and rutile polymorphs. The Ce addition induced a decrease in the energy gap, allowing enhancement of visible light harvesting. The photodegradation of methylene blue, MB, in aqueous solution was chosen to study the influence of the morphology and the ceria loading on the photocatalytic response, under UV and solar light. Both CeO2–TiO2 nanoparticles and nanotubes were found to be very active under UV light. The highest MB degradation rates were obtained for the 0.25 wt% CeO2 doping, for both nanotubes and nanoparticles (0.123 and 0.146 min1, respectively), able to photodegrade completely the dye after 120 min. The two samples are stable after a 3-cycle reusability test. The photo-response under simulated solar light confirmed that doping titania with ceria allows harvesting visible light absorption, enhancing its photoactivity. A maximum efficiency of 85% under simulated sunlight at a degradation rate of 0.054 min-1 was obtained. Transient photoluminescence confirmed that MB acts as a charge scavenger for the composite system. These results pointed out ceria-doped titania nanostructures as a promising class of photocatalysts for the degradation of dyes and other hazardous organic compounds in wastewater.
File in questo prodotto:
File Dimensione Formato  
DOI11039d1qm00068c ceria doping boosts methylene photodegradation in titania nanostructures.pdf

accesso aperto

Tipologia: Documento in Versione Editoriale
Licenza: Creative commons
Dimensione 6.43 MB
Formato Adobe PDF
6.43 MB Adobe PDF Visualizza/Apri
Informazioni supplementari DOI 101039d1qm00068c.pdf

accesso aperto

Descrizione: SUPPLEMENTARY INFORMATION
Tipologia: Altro materiale allegato
Licenza: Creative commons
Dimensione 1.43 MB
Formato Adobe PDF
1.43 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11368/2999444
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 24
  • ???jsp.display-item.citation.isi??? 23
social impact