The present work is devoted to the analysis of density-dependent, incompressible fluids in a 3D torus, when the Froude number epsilon goes to zero. We consider the very general case where the initial data do not have a zero horizontal average, where we only have smoothing effect on the velocity but not on the density and where we can have resonant phenomena on the domain. We explicitly determine the limit system when epsilon -> 0 and prove its global wellposedness. Finally, we prove that for large initial data, the density-dependent, incompressible fluid system is globally wellposed, provided that epsilon is small enough.

On the influence of gravity on density-dependent incompressible periodic fluids

Scrobogna S
2019-01-01

Abstract

The present work is devoted to the analysis of density-dependent, incompressible fluids in a 3D torus, when the Froude number epsilon goes to zero. We consider the very general case where the initial data do not have a zero horizontal average, where we only have smoothing effect on the velocity but not on the density and where we can have resonant phenomena on the domain. We explicitly determine the limit system when epsilon -> 0 and prove its global wellposedness. Finally, we prove that for large initial data, the density-dependent, incompressible fluid system is globally wellposed, provided that epsilon is small enough.
File in questo prodotto:
File Dimensione Formato  
1-s2.0-S0022039619300774-main.pdf

Accesso chiuso

Tipologia: Documento in Versione Editoriale
Licenza: Copyright Editore
Dimensione 599.73 kB
Formato Adobe PDF
599.73 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
1-s2.0-S0022039619300774-main-Post_print.pdf

Open Access dal 27/02/2021

Tipologia: Bozza finale post-referaggio (post-print)
Licenza: Creative commons
Dimensione 1.04 MB
Formato Adobe PDF
1.04 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11368/3003679
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 8
  • ???jsp.display-item.citation.isi??? 8
social impact