We prove that the incompressible, density dependent, Navier-Stokes equations are globally well posed in a low Froude number regime. The density profile is supposed to be increasing in depth and linearized around a stable state. Moreover if the Froude number tends to zero we prove that such system converges (strongly) to a two-dimensional, stratified Navier-Stokes equations with full diffusivity. No smallness assumption is considered on the initial data.

Global existence and convergence of nondimensionalized incompressible Navier-Stokes equations in low Froude number regime

Scrobogna S
2020-01-01

Abstract

We prove that the incompressible, density dependent, Navier-Stokes equations are globally well posed in a low Froude number regime. The density profile is supposed to be increasing in depth and linearized around a stable state. Moreover if the Froude number tends to zero we prove that such system converges (strongly) to a two-dimensional, stratified Navier-Stokes equations with full diffusivity. No smallness assumption is considered on the initial data.
File in questo prodotto:
File Dimensione Formato  
Scrobogna-2-22(1)-2-42.pdf

Accesso chiuso

Tipologia: Documento in Versione Editoriale
Licenza: Digital Rights Management non definito
Dimensione 12.12 MB
Formato Adobe PDF
12.12 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11368/3003705
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 6
  • ???jsp.display-item.citation.isi??? 3
social impact