We present the first chemical evolution model for Enceladus, alias the Gaia Sausage, to investigate the star formation history of one of the most massive satellites accreted by the Milky Way during a major merger event. Our best chemical evolution model for Enceladus nicely fits the observed stellar [α/Fe]-[Fe/H] chemical abundance trends, and reproduces the observed stellar metallicity distribution function, by assuming low star formation efficiency, fast infall time-scale, and mild outflow intensity. We predict a median age for Enceladus stars 12.33^{+0.92}_{-1.36} Gyr, and - at the time of the merger with our Galaxy (≈10 Gyr ago from Helmi et al.) - we predict for Enceladus a total stellar mass M⋆≈ 5 × 109Modot. By looking at the predictions of our best model, we discuss that merger events between the Galaxy and systems like Enceladus may have inhibited the gas accretion on to the Galaxy disc at high redshifts, heating up the gas in the halo. This scenario could explain the extended period of quenching in the star formation activity of our Galaxy about 10 Gyr ago, which is predicted by Milky Way chemical evolution models, in order to reproduce the observed bimodality in [α/Fe]-[Fe/H] between thick- and thin-disc stars.

The Fall of a Giant. Chemical evolution of Enceladus, alias the Gaia Sausage

CALURA, Francesco;Matteucci, Francesca;CESCUTTI, GABRIELE
2019-01-01

Abstract

We present the first chemical evolution model for Enceladus, alias the Gaia Sausage, to investigate the star formation history of one of the most massive satellites accreted by the Milky Way during a major merger event. Our best chemical evolution model for Enceladus nicely fits the observed stellar [α/Fe]-[Fe/H] chemical abundance trends, and reproduces the observed stellar metallicity distribution function, by assuming low star formation efficiency, fast infall time-scale, and mild outflow intensity. We predict a median age for Enceladus stars 12.33^{+0.92}_{-1.36} Gyr, and - at the time of the merger with our Galaxy (≈10 Gyr ago from Helmi et al.) - we predict for Enceladus a total stellar mass M⋆≈ 5 × 109Modot. By looking at the predictions of our best model, we discuss that merger events between the Galaxy and systems like Enceladus may have inhibited the gas accretion on to the Galaxy disc at high redshifts, heating up the gas in the halo. This scenario could explain the extended period of quenching in the star formation activity of our Galaxy about 10 Gyr ago, which is predicted by Milky Way chemical evolution models, in order to reproduce the observed bimodality in [α/Fe]-[Fe/H] between thick- and thin-disc stars.
2019
Pubblicato
http://hdl.handle.net/20.500.12386/30931
File in questo prodotto:
File Dimensione Formato  
slz070.pdf

Accesso chiuso

Tipologia: Documento in Versione Editoriale
Licenza: Copyright Editore
Dimensione 899.39 kB
Formato Adobe PDF
899.39 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11368/3003789
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 86
  • ???jsp.display-item.citation.isi??? 82
social impact