This paper aims at proving the existence and the localization of an unbounded connected set of positive regular solutions (λ,u) of the quasilinear Neumann problem −(u′/1+(u′)2)′=λa(x)f(u),0<1,u′(0)=u′(1)=0,bifurcating from u=0 as λ→+∞. Here, (u′/1+(u′)2)′ is the one-dimensional curvature operator, λ∈R is a parameter, the weight a changes sign, and the function f is superlinear at 0. A novel approach is introduced based on the explicit construction of non-ordered sub and supersolutions.
Branches of positive solutions of a superlinear indefinite problem driven by the one-dimensional curvature operator
Omari P.
2022-01-01
Abstract
This paper aims at proving the existence and the localization of an unbounded connected set of positive regular solutions (λ,u) of the quasilinear Neumann problem −(u′/1+(u′)2)′=λa(x)f(u),0<1,u′(0)=u′(1)=0,bifurcating from u=0 as λ→+∞. Here, (u′/1+(u′)2)′ is the one-dimensional curvature operator, λ∈R is a parameter, the weight a changes sign, and the function f is superlinear at 0. A novel approach is introduced based on the explicit construction of non-ordered sub and supersolutions.File in questo prodotto:
| File | Dimensione | Formato | |
|---|---|---|---|
|
JLG-PO AML 21.pdf
Accesso chiuso
Descrizione: versione dell'editore
Tipologia:
Documento in Versione Editoriale
Licenza:
Digital Rights Management non definito
Dimensione
691.96 kB
Formato
Adobe PDF
|
691.96 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
|
LGO_Superlinear_preprint.pdf
Open Access dal 04/12/2023
Descrizione: preprint
Tipologia:
Documento in Pre-print
Licenza:
Creative commons
Dimensione
305.21 kB
Formato
Adobe PDF
|
305.21 kB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


