This paper aims at proving the existence and the localization of an unbounded connected set of positive regular solutions (λ,u) of the quasilinear Neumann problem −(u′/1+(u′)2)′=λa(x)f(u),0<1,u′(0)=u′(1)=0,bifurcating from u=0 as λ→+∞. Here, (u′/1+(u′)2)′ is the one-dimensional curvature operator, λ∈R is a parameter, the weight a changes sign, and the function f is superlinear at 0. A novel approach is introduced based on the explicit construction of non-ordered sub and supersolutions.

Branches of positive solutions of a superlinear indefinite problem driven by the one-dimensional curvature operator

Omari P.
2022-01-01

Abstract

This paper aims at proving the existence and the localization of an unbounded connected set of positive regular solutions (λ,u) of the quasilinear Neumann problem −(u′/1+(u′)2)′=λa(x)f(u),0<1,u′(0)=u′(1)=0,bifurcating from u=0 as λ→+∞. Here, (u′/1+(u′)2)′ is the one-dimensional curvature operator, λ∈R is a parameter, the weight a changes sign, and the function f is superlinear at 0. A novel approach is introduced based on the explicit construction of non-ordered sub and supersolutions.
File in questo prodotto:
File Dimensione Formato  
JLG-PO AML 21.pdf

Accesso chiuso

Descrizione: versione dell'editore
Tipologia: Documento in Versione Editoriale
Licenza: Digital Rights Management non definito
Dimensione 691.96 kB
Formato Adobe PDF
691.96 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
LGO_Superlinear_preprint.pdf

Open Access dal 04/12/2023

Descrizione: preprint
Tipologia: Documento in Pre-print
Licenza: Creative commons
Dimensione 305.21 kB
Formato Adobe PDF
305.21 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11368/3005111
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 6
  • ???jsp.display-item.citation.isi??? 4
social impact