The transduction process that occurs in the inner ear of the auditory system is a complex mechanism which requires a non-linear dynamical description. In addition to this, the stochastic phenomena that naturally arise in the inner ear during the transduction of an external sound into an electro-chemical signal must also be taken into account. The presence of noise is usually undesirable, but in non-linear systems a moderate amount of noise can improve the system's performance and increase the signal-to-noise ratio. The phenomenon of stochastic resonance combines randomness with non-linearity and is a natural candidate to explain at least part of the hearing process which is observed in the inner ear. In this work, we present a toy model of the auditory system which shows how stochastic resonance can be instrumental to sound perception, and suggests an explanation of the frequency dependence of the hearing threshold.
A toy model for the auditory system that exploits stochastic resonance
Milotti, Edoardo
2022-01-01
Abstract
The transduction process that occurs in the inner ear of the auditory system is a complex mechanism which requires a non-linear dynamical description. In addition to this, the stochastic phenomena that naturally arise in the inner ear during the transduction of an external sound into an electro-chemical signal must also be taken into account. The presence of noise is usually undesirable, but in non-linear systems a moderate amount of noise can improve the system's performance and increase the signal-to-noise ratio. The phenomenon of stochastic resonance combines randomness with non-linearity and is a natural candidate to explain at least part of the hearing process which is observed in the inner ear. In this work, we present a toy model of the auditory system which shows how stochastic resonance can be instrumental to sound perception, and suggests an explanation of the frequency dependence of the hearing threshold.File | Dimensione | Formato | |
---|---|---|---|
Veronesi&Milotti_2022.pdf
Accesso chiuso
Tipologia:
Documento in Versione Editoriale
Licenza:
Copyright Editore
Dimensione
1.44 MB
Formato
Adobe PDF
|
1.44 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Veronesi&Milotti_2022-Post_print.pdf
Open Access dal 06/01/2023
Tipologia:
Bozza finale post-referaggio (post-print)
Licenza:
Creative commons
Dimensione
1.94 MB
Formato
Adobe PDF
|
1.94 MB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.