Aims: Precapillary pulmonary hypertension (pPH) affects left ventricular (LV) function by ventricular interdependence. Since LV ejection fraction (EF) is commonly preserved, LV dysfunction should be assessed with more sensitive techniques. Left atrial (LA) strain and estimation of LV intraventricular pressure gradients (IVPG) may be valuable in detecting subtle changes in LV mechanics; however, the value of these techniques in pPH is unknown. Therefore, the aim of our study is to evaluate LA strain and LV-IVPGs from cardiovascular magnetic resonance (CMR) cines in pPH patients. Methods and results: In this cross-sectional study, 31 pPH patients and 22 healthy volunteers underwent CMR imaging. Feature-tracking LA strain was measured on four- and two-chamber cines. LV-IVPGs (from apex-base) are computed from a formulation using the myocardial movement and velocity of the reconstructed 3D-LV (derived from long-axis cines using feature-tracking). Systolic function, both LV EF and systolic ejection IVPG, was preserved in pPH patients. Compared to healthy volunteers, diastolic function was impaired in pPH patients, depicted by (i) lower LA reservoir (36 ± 7% vs. 26 ± 9%, P < 0.001) and conduit strain (26 ± 6% vs. 15 ± 8%, P < 0.001) and (ii) impaired diastolic suction (-9.1 ± 3.0 vs. ‒6.4 ± 4.4, P = 0.02) and E-wave decelerative IVPG (8.9 ± 2.6 vs. 5.7 ± 3.1, P < 0.001). Additionally, 11 pPH patients (35%) showed reversal of IVPG at systolic-diastolic transition compared to none of the healthy volunteers (P = 0.002). Conclusions: pPH impacts LV function by altering diastolic function, demonstrated by an impairment of LA phasic function and LV-IVPG analysis. These parameters could therefore potentially be used as early markers for LV functional decline in pPH patients.

Cardiovascular magnetic resonance-derived left ventricular intraventricular pressure gradients among patients with precapillary pulmonary hypertension

Pedrizzetti, Gianni;
2022

Abstract

Aims: Precapillary pulmonary hypertension (pPH) affects left ventricular (LV) function by ventricular interdependence. Since LV ejection fraction (EF) is commonly preserved, LV dysfunction should be assessed with more sensitive techniques. Left atrial (LA) strain and estimation of LV intraventricular pressure gradients (IVPG) may be valuable in detecting subtle changes in LV mechanics; however, the value of these techniques in pPH is unknown. Therefore, the aim of our study is to evaluate LA strain and LV-IVPGs from cardiovascular magnetic resonance (CMR) cines in pPH patients. Methods and results: In this cross-sectional study, 31 pPH patients and 22 healthy volunteers underwent CMR imaging. Feature-tracking LA strain was measured on four- and two-chamber cines. LV-IVPGs (from apex-base) are computed from a formulation using the myocardial movement and velocity of the reconstructed 3D-LV (derived from long-axis cines using feature-tracking). Systolic function, both LV EF and systolic ejection IVPG, was preserved in pPH patients. Compared to healthy volunteers, diastolic function was impaired in pPH patients, depicted by (i) lower LA reservoir (36 ± 7% vs. 26 ± 9%, P < 0.001) and conduit strain (26 ± 6% vs. 15 ± 8%, P < 0.001) and (ii) impaired diastolic suction (-9.1 ± 3.0 vs. ‒6.4 ± 4.4, P = 0.02) and E-wave decelerative IVPG (8.9 ± 2.6 vs. 5.7 ± 3.1, P < 0.001). Additionally, 11 pPH patients (35%) showed reversal of IVPG at systolic-diastolic transition compared to none of the healthy volunteers (P = 0.002). Conclusions: pPH impacts LV function by altering diastolic function, demonstrated by an impairment of LA phasic function and LV-IVPG analysis. These parameters could therefore potentially be used as early markers for LV functional decline in pPH patients.
Pubblicato
https://academic.oup.com/ehjcimaging/advance-article/doi/10.1093/ehjci/jeab294/6498031#334838050
File in questo prodotto:
File Dimensione Formato  
2022EHJCI.pdf

accesso aperto

Tipologia: Documento in Versione Editoriale
Licenza: Creative commons
Dimensione 1.09 MB
Formato Adobe PDF
1.09 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11368/3005297
Citazioni
  • ???jsp.display-item.citation.pmc??? 1
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 1
social impact