We prove an interpolation theorem for slice-regular quaternionic functions. We define very tame sets in H 2 to be the sets which can be mapped by compositions of automorphisms with volume 1 to the set T = {(2n − 1, 0), n ∈ N} ∪ {(2n + S, 0), n ∈ N}. We then show that any zero set of a slice-regular function of one variable embedded in H × {0} ⊂ H 2 is very tame in H 2 . A notion of slice Fatou–Bieberbach domain in H 2 is introduced and, finally, a slice Fatou–Bieberbach domain in H 2 avoiding T is constructed in the last section.

An interpolation theorem for slice-regular functions with application to very tame sets and slice Fatou–Bieberbach domains in H 2

Fabio Vlacci
2022-01-01

Abstract

We prove an interpolation theorem for slice-regular quaternionic functions. We define very tame sets in H 2 to be the sets which can be mapped by compositions of automorphisms with volume 1 to the set T = {(2n − 1, 0), n ∈ N} ∪ {(2n + S, 0), n ∈ N}. We then show that any zero set of a slice-regular function of one variable embedded in H × {0} ⊂ H 2 is very tame in H 2 . A notion of slice Fatou–Bieberbach domain in H 2 is introduced and, finally, a slice Fatou–Bieberbach domain in H 2 avoiding T is constructed in the last section.
File in questo prodotto:
File Dimensione Formato  
s10231-022-01195-w.pdf

accesso aperto

Tipologia: Documento in Versione Editoriale
Licenza: Creative commons
Dimensione 2.78 MB
Formato Adobe PDF
2.78 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11368/3005579
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact