Paleo-bathymetric reconstructions provide boundary conditions to numerical models of ice sheet evolution and ocean circulation that are critical to understanding their evolution through time. The geological community lacks a complex open-source tool that allows for community implementations and strengthens research synergies. To fill this gap, we present PALEOSTRIPv1.0, a MATLAB open-source software designed to perform 1D, 2D, and 3D backtracking of paleo-bathymetries. PALEOSTRIP comes with a graphical user interface (GUI) to facilitate computation of sensitivity tests and to allow the users to switch all the different processes on and off and thus separate the various aspects of backtracking. As such, all physical parameters can be modified from the GUI. It includes 3D flexural isostasy, 1D thermal subsidence, and possibilities to correct for prescribed sea level and dynamical topography changes. In the following, we detail the physics embedded within PALEOSTRIP, and we show its application using a drilling site (1D), a transect (2D), and a map (3D), taking the Ross Sea (Antarctica) as a case study. PALEOSTRIP has been designed to be modular and to allow users to insert their own implementations.

PALEOSTRIPv1.0- A user-friendly 3D backtracking software to reconstruct paleo-bathymetries

De Santis L.;Pochini E.;Forlin E.;Geletti R.;Tesauro M.;Busetti M.;Braitenberg C.
2021-01-01

Abstract

Paleo-bathymetric reconstructions provide boundary conditions to numerical models of ice sheet evolution and ocean circulation that are critical to understanding their evolution through time. The geological community lacks a complex open-source tool that allows for community implementations and strengthens research synergies. To fill this gap, we present PALEOSTRIPv1.0, a MATLAB open-source software designed to perform 1D, 2D, and 3D backtracking of paleo-bathymetries. PALEOSTRIP comes with a graphical user interface (GUI) to facilitate computation of sensitivity tests and to allow the users to switch all the different processes on and off and thus separate the various aspects of backtracking. As such, all physical parameters can be modified from the GUI. It includes 3D flexural isostasy, 1D thermal subsidence, and possibilities to correct for prescribed sea level and dynamical topography changes. In the following, we detail the physics embedded within PALEOSTRIP, and we show its application using a drilling site (1D), a transect (2D), and a map (3D), taking the Ross Sea (Antarctica) as a case study. PALEOSTRIP has been designed to be modular and to allow users to insert their own implementations.
File in questo prodotto:
File Dimensione Formato  
gmd-14-5285-2021.pdf

accesso aperto

Descrizione: Articolo
Tipologia: Documento in Versione Editoriale
Licenza: Creative commons
Dimensione 9.96 MB
Formato Adobe PDF
9.96 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11368/3006656
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact