Background and Aim: The Mediterranean is one of the major gateways of human migratory fluxes from Northern Africa, the Middle East, and Central Asia to Europe. Sea accidents have become an urgent humanitarian crisis due to the high number of migrants on the move, but data on the physiological effects to sudden cool water immersion are not as extensive as cold-water studies. We wanted to evaluate to what extent cool water immersion (~18◦ C) may detrimentally affect cognitive ability and cardiorespiratory strain compared to the more prevalent cold-water (<10–15◦ C) studies. Methods: In this case, 10 active, healthy men participated in this study which consisted of completing one familiarization trial, and then a control (CON) or experimental (EXP) trial in a randomized, repeated-measures, cross-over fashion, separated by at least 7-days. Cognitive function was assessed via the Symbol Digit Modalities Test (SDMT), a code substitution test, performed at baseline, then repeated in either a thermoneutral (~25◦ C room air) dry environment, or when immersed to the neck in 18◦ C water. Testing consisted of six “Step” time-blocks 45-s each, with a 5-s pause between each Step. Cardiorespiratory measures, continuously recorded, included heart rate (beats per minute), minute ventilation (.VE, L·min−1), oxygen consumption (.VO2, L·min−1), and respiratory frequency (fR, count·min−1). Results: Initial responses to cool water (<2 min) found that participants performed ~11% worse on the code substitution test (p = 0.025), consumed 149% greater amounts of oxygen (CI: 5.1 to 9.1 L·min−1, p < 0.0001) and experienced higher cardiovascular strain (HR CI: 13 to 38 beats per minute, p = 0.001) than during the control trial. Physiological strain was in-line to those observed in much colder water temperature. Conclusion: Sudden, cool water immersion also negatively affects cognitive function and cardiorespiratory strain, especially during the first two minutes of exposure. The magnitude increase in heart rate is strongly associated with poorer cognitive function, even in (relatively) warmer water consistent with temperatures found in the Mediterranean Sea environment.

Marine Survival in the Mediterranean: A Pilot Study on the Cognitive and Cardiorespiratory Response to Sudden Cool Water Immersion

Stella A. B.
;
2022-01-01

Abstract

Background and Aim: The Mediterranean is one of the major gateways of human migratory fluxes from Northern Africa, the Middle East, and Central Asia to Europe. Sea accidents have become an urgent humanitarian crisis due to the high number of migrants on the move, but data on the physiological effects to sudden cool water immersion are not as extensive as cold-water studies. We wanted to evaluate to what extent cool water immersion (~18◦ C) may detrimentally affect cognitive ability and cardiorespiratory strain compared to the more prevalent cold-water (<10–15◦ C) studies. Methods: In this case, 10 active, healthy men participated in this study which consisted of completing one familiarization trial, and then a control (CON) or experimental (EXP) trial in a randomized, repeated-measures, cross-over fashion, separated by at least 7-days. Cognitive function was assessed via the Symbol Digit Modalities Test (SDMT), a code substitution test, performed at baseline, then repeated in either a thermoneutral (~25◦ C room air) dry environment, or when immersed to the neck in 18◦ C water. Testing consisted of six “Step” time-blocks 45-s each, with a 5-s pause between each Step. Cardiorespiratory measures, continuously recorded, included heart rate (beats per minute), minute ventilation (.VE, L·min−1), oxygen consumption (.VO2, L·min−1), and respiratory frequency (fR, count·min−1). Results: Initial responses to cool water (<2 min) found that participants performed ~11% worse on the code substitution test (p = 0.025), consumed 149% greater amounts of oxygen (CI: 5.1 to 9.1 L·min−1, p < 0.0001) and experienced higher cardiovascular strain (HR CI: 13 to 38 beats per minute, p = 0.001) than during the control trial. Physiological strain was in-line to those observed in much colder water temperature. Conclusion: Sudden, cool water immersion also negatively affects cognitive function and cardiorespiratory strain, especially during the first two minutes of exposure. The magnitude increase in heart rate is strongly associated with poorer cognitive function, even in (relatively) warmer water consistent with temperatures found in the Mediterranean Sea environment.
File in questo prodotto:
File Dimensione Formato  
BuoiteStella&Morrison, 2022_MarineSurvivalCWI.pdf

accesso aperto

Tipologia: Documento in Versione Editoriale
Licenza: Creative commons
Dimensione 2.01 MB
Formato Adobe PDF
2.01 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11368/3009133
Citazioni
  • ???jsp.display-item.citation.pmc??? 0
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact