Strain hardening, i.e., the nonlinear elastic response of materials under load, is a physiological response of biological tissues to mechanical stimulation. It has recently been shown to play a central role in regulating cell fate. In this paper, we investigate the effect of temperature and polymer concentrations on the strain hardening of covalent hydrogels composed of pH-neutral soluble chitosans crosslinked with genipin. A series of highly acetylated chitosans with a fraction of acetylated units, FA, in the range of 0.4–0.6 was synthesized by the homogeneous re-N-acetylation of a partially acetylated chitosan or the heterogeneous deacetylation of chitin. A chitosan sample with an FA = 0.44 was used to prepare hydrogels with genipin as a crosslinker at a neutral pH. Time and frequency sweep experiments were then performed to obtain information on the gelling kinetics and mechanical response of the resulting hydrogels under small amplitude oscillatory shear. While the shear modulus depends on the chitosan concentration and is almost independent of the gel temperature, we show that the extent of hardening can be modulated when the gelling temperature is varied and is almost independent of the experimental conditions used to build the hydrogels (ex situ or in situ gelation). The overall effect is attributed to a subtle balance between the physical (weak) entanglements and covalent (strong) crosslinks that determine the mechanical response of highly acetylated chitosan hydrogels at large deformations.

Influence of Temperature and Polymer Concentration on the Nonlinear Response of Highly Acetylated Chitosan–Genipin Hydrogels

Sacco, Pasquale;Donati, Ivan
2022-01-01

Abstract

Strain hardening, i.e., the nonlinear elastic response of materials under load, is a physiological response of biological tissues to mechanical stimulation. It has recently been shown to play a central role in regulating cell fate. In this paper, we investigate the effect of temperature and polymer concentrations on the strain hardening of covalent hydrogels composed of pH-neutral soluble chitosans crosslinked with genipin. A series of highly acetylated chitosans with a fraction of acetylated units, FA, in the range of 0.4–0.6 was synthesized by the homogeneous re-N-acetylation of a partially acetylated chitosan or the heterogeneous deacetylation of chitin. A chitosan sample with an FA = 0.44 was used to prepare hydrogels with genipin as a crosslinker at a neutral pH. Time and frequency sweep experiments were then performed to obtain information on the gelling kinetics and mechanical response of the resulting hydrogels under small amplitude oscillatory shear. While the shear modulus depends on the chitosan concentration and is almost independent of the gel temperature, we show that the extent of hardening can be modulated when the gelling temperature is varied and is almost independent of the experimental conditions used to build the hydrogels (ex situ or in situ gelation). The overall effect is attributed to a subtle balance between the physical (weak) entanglements and covalent (strong) crosslinks that determine the mechanical response of highly acetylated chitosan hydrogels at large deformations.
2022
Pubblicato
File in questo prodotto:
File Dimensione Formato  
gels-08-00194.pdf

accesso aperto

Tipologia: Documento in Versione Editoriale
Licenza: Creative commons
Dimensione 2.51 MB
Formato Adobe PDF
2.51 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11368/3014769
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 2
social impact