Harmful algae blooms (HABs) are a growing phenomenon also in the Mediterranean Sea, with potential negative impacts on both the marine ecosystem and human health. The numerous algal species detected during HABs in this area include Ostreopsis spp. and Dinophysis spp., associated with their toxins, palytoxin (PLTX) and its analogues or okadaic acid (OA) and its analogues, respectively. In the first part of the PhD project, the potential ecotoxicological impact of PLTX, OA and two its analogues (dinophysistoxin-1 and -2; DTX1 and DTX2) was assessed by the toxin’s effects on the micro-crustacean Artemia franciscana. At environmentally-relevant toxins concentrations, each compound was firstly evaluated for its effect on cysts hatching and mortality of A. franciscana at two developmental stages (nauplii I and adults). Secondly, the possible mechanism of toxicity was investigated on adults, the most sensitive stage to all the toxins, in terms of reactive oxygen species production and activity of three antioxidant enzymes (glutathione-S-transferase, superoxide dismutase and catalase). Specifically, PLTX turned out to be the most toxic compound, inducing a significant mortality in adults already starting from 12 h of exposure, with a concentration inducing 50% of lethality in the treated organisms (LC50) of 2.3x10^-9 M. On the contrary, OA and DTXs were less toxic, recording mortality in adult organisms only at the highest concentration tested (1.0x10^-7 M) starting from 24 h for DTX1, 48 h for OA, and 72 h for DTX2. The four toxins induced different effects in A. franciscana: an increase of ROS production was recorded only for PLTX and DTX2. Similarly, the 4 toxins induced different patterns of variations of antioxidant enzymes activity, suggesting different toxicity mechanisms. In general, these results indicate a potential negative effect of these toxins on Artemia population with potential consequences at the ecosystem level. The second part of the project was aimed at investigating in vitro the potential human embryotoxicity of PLTX, an undervalued effect of this toxin. For this purpose, the human induced pluripotent stem cell (iPSC) 253G1 line was used. PLTX induced a lower cytotoxic effect on iPSC as compared to a somatic non-stem cell line (HaCaT keratinocytes): the concentrations giving the 50% of the effect (EC50) after 4 h exposure were equal to 1.3x10^-8 M and 8.3x10-^11 M respectively. This difference was correlated to a lower binding affinity of the undifferentiated iPSC for PLTX and a different pattern of gene expression for the isoforms of the PLTX molecular target (Na+/K+ ATPase). In addition, the analysis of gene expression of 13 markers (five markers of stem cells and eight differentiation markers for the 3 germ layers) and the protein expression of the most representative markers of stemness, endoderm, mesoderm and ectoderm, suggest that the toxin does not affect iPSC stemness. However, analysing the impact of PLTX on iPSC differentiation into the three germ layers (i.e., exposing the cells to 1.0x10^-11 M PLTX during iPSC differentiation into endoderm, mesoderm and ectoderm), the toxin induced a perturbation of iPSC differentiation towards endoderm. Intriguingly, cytotoxic effect of PLTX on differentiated iPSC to endoderm, mesoderm or ectoderm cells after 24 h of exposure, demonstrated a higher effect right in the endoderm (EC50 =5.1x10^-8 M) other than in the ectoderm (EC50 =2.2x10^-8 M), while mesoderm was almost insensitive to the toxin effects. On the whole, these results highlighted a potential embryotoxic effect of PLTX during the early phases of embryo development, in particular affecting the correct differentiation process towards endoderm.
Il fenomeno noto con il termine “Harmful Algal Bloom” (HAB) è in espansione anche nel Mar Mediterraneo, con potenziali impatti negativi sia sull'ecosistema marino che sulla salute umana. Le numerose specie algali rilevate durante le HAB in quest'area includono Ostreopsis spp. e Dinophysis spp., associati a palitossina (PLTX) e suoi analoghi o acido okadaico (OA) e suoi analoghi, rispettivamente. Nella prima parte del progetto di dottorato, il potenziale impatto ecotossicologico di PLTX, OA e due suoi analoghi (DTX1 e DTX2) è stato valutato sul micro-crostaceo Artemia franciscana. A concentrazioni di tossine rilevate a livello ambientale, per ciascuna tossina è stato dapprima valutato il suo effetto sulla schiusa delle cisti e sulla mortalità di A. franciscana a due stadi di sviluppo (naupli I e adulti). In secondo luogo, è stato studiato il possibile meccanismo di tossicità sugli adulti, lo stadio più sensibile a tutte le tossine, in termini di produzione di specie reattive dell'ossigeno e attività di tre enzimi antiossidanti (glutatione-S-transferasi, superossido dismutasi e catalasi). Nello specifico, PLTX è risultato essere il composto più tossico, inducendo una significativa mortalità negli adulti già a partire dalle 12h di esposizione, con una concentrazione che induce il 50% di letalità negli organismi trattati (LC50) di 2,3x10^-9M. Al contrario, OA e DTXs erano meno tossici, registrando una mortalità negli organismi adulti solo alla massima concentrazione testata (1,0x10^-7M) a partire da 24h per DTX1, 48h per OA e 72h per DTX2. Inoltre, le 4 tossine hanno indotto effetti diversi in A. franciscana: un aumento della produzione di ROS è stato registrato solo per PLTX e DTX2. Allo stesso modo, le 4 tossine hanno indotto diverse variazioni dell'attività degli enzimi antiossidanti, suggerendo diversi meccanismi di tossicità. In generale, questi risultati indicano un potenziale effetto negativo di queste tossine sulla popolazione di Artemia con potenziali conseguenze a livello di ecosistema. La seconda parte del progetto mirava a studiare in vitro la potenziale embriotossicità umana di PLTX, un aspetto di questa tossina ancora poco studiato. A questo scopo è stata utilizzata la linea 253G1 di cellule staminali pluripotenti indotte umane (iPSC). PLTX ha indotto un effetto citotossico inferiore su iPSC rispetto a una linea di cellule somatiche non staminale (cheratinociti HaCaT): le concentrazioni che danno il 50% dell'effetto (EC50) dopo 4h di esposizione erano pari a 1,3x10^-8M e 8,3x10^-11M rispettivamente. Questa differenza è stata correlata a una minore affinità di legame delle iPSC indifferenziate per PLTX e un diverso pattern di espressione genica delle isoforme del bersaglio molecolare di PLTX (Na+/K+ ATPasi). Inoltre, l'analisi dell'espressione genica di 13 marker (5 marker di cellule staminali e 8 marker di differenziamento nei 3 foglietti embrionali) e l'espressione proteica dei marker più rappresentativi di staminalità, endoderma, mesoderma ed ectoderma, suggeriscono che la tossina non influisce sulla staminalità delle iPSC. Tuttavia, analizzando l'impatto di PLTX sul differenziamento delle iPSC nei 3 foglietti embrionali (cioè esponendo le cellule a PLTX 1,0x10^-11M durante il differenziamento delle iPSC in endoderma, mesoderma ed ectoderma), la tossina ha indotto una perturbazione del differenziamento verso l'endoderma. Curiosamente, l'effetto citotossico di PLTX su cellule iPSC differenziate a endoderma, mesoderma o ectoderma dopo 24h di esposizione, ha dimostrato un effetto maggiore proprio nell'endoderma (EC50=5,1x10^-8M) rispetto all'ectoderma (EC50=2,2x10^-8M), mentre il mesoderma era quasi insensibile agli effetti della tossina. Nel complesso, questi risultati hanno evidenziato un potenziale effetto embriotossico di PLTX durante le prime fasi dello sviluppo embrionale, in particolare influenzando il corretto processo di differenziamento verso l'endoderma.
TOSSINE ALGALI NEL MAR MEDITERRANEO: EFFETTI ECOTOSSICOLOGICI E POTENZIALI SULLA SALUTE UMANA / Cavion, Federica. - (2022 Mar 25).
TOSSINE ALGALI NEL MAR MEDITERRANEO: EFFETTI ECOTOSSICOLOGICI E POTENZIALI SULLA SALUTE UMANA
CAVION, FEDERICA
2022-03-25
Abstract
Harmful algae blooms (HABs) are a growing phenomenon also in the Mediterranean Sea, with potential negative impacts on both the marine ecosystem and human health. The numerous algal species detected during HABs in this area include Ostreopsis spp. and Dinophysis spp., associated with their toxins, palytoxin (PLTX) and its analogues or okadaic acid (OA) and its analogues, respectively. In the first part of the PhD project, the potential ecotoxicological impact of PLTX, OA and two its analogues (dinophysistoxin-1 and -2; DTX1 and DTX2) was assessed by the toxin’s effects on the micro-crustacean Artemia franciscana. At environmentally-relevant toxins concentrations, each compound was firstly evaluated for its effect on cysts hatching and mortality of A. franciscana at two developmental stages (nauplii I and adults). Secondly, the possible mechanism of toxicity was investigated on adults, the most sensitive stage to all the toxins, in terms of reactive oxygen species production and activity of three antioxidant enzymes (glutathione-S-transferase, superoxide dismutase and catalase). Specifically, PLTX turned out to be the most toxic compound, inducing a significant mortality in adults already starting from 12 h of exposure, with a concentration inducing 50% of lethality in the treated organisms (LC50) of 2.3x10^-9 M. On the contrary, OA and DTXs were less toxic, recording mortality in adult organisms only at the highest concentration tested (1.0x10^-7 M) starting from 24 h for DTX1, 48 h for OA, and 72 h for DTX2. The four toxins induced different effects in A. franciscana: an increase of ROS production was recorded only for PLTX and DTX2. Similarly, the 4 toxins induced different patterns of variations of antioxidant enzymes activity, suggesting different toxicity mechanisms. In general, these results indicate a potential negative effect of these toxins on Artemia population with potential consequences at the ecosystem level. The second part of the project was aimed at investigating in vitro the potential human embryotoxicity of PLTX, an undervalued effect of this toxin. For this purpose, the human induced pluripotent stem cell (iPSC) 253G1 line was used. PLTX induced a lower cytotoxic effect on iPSC as compared to a somatic non-stem cell line (HaCaT keratinocytes): the concentrations giving the 50% of the effect (EC50) after 4 h exposure were equal to 1.3x10^-8 M and 8.3x10-^11 M respectively. This difference was correlated to a lower binding affinity of the undifferentiated iPSC for PLTX and a different pattern of gene expression for the isoforms of the PLTX molecular target (Na+/K+ ATPase). In addition, the analysis of gene expression of 13 markers (five markers of stem cells and eight differentiation markers for the 3 germ layers) and the protein expression of the most representative markers of stemness, endoderm, mesoderm and ectoderm, suggest that the toxin does not affect iPSC stemness. However, analysing the impact of PLTX on iPSC differentiation into the three germ layers (i.e., exposing the cells to 1.0x10^-11 M PLTX during iPSC differentiation into endoderm, mesoderm and ectoderm), the toxin induced a perturbation of iPSC differentiation towards endoderm. Intriguingly, cytotoxic effect of PLTX on differentiated iPSC to endoderm, mesoderm or ectoderm cells after 24 h of exposure, demonstrated a higher effect right in the endoderm (EC50 =5.1x10^-8 M) other than in the ectoderm (EC50 =2.2x10^-8 M), while mesoderm was almost insensitive to the toxin effects. On the whole, these results highlighted a potential embryotoxic effect of PLTX during the early phases of embryo development, in particular affecting the correct differentiation process towards endoderm.File | Dimensione | Formato | |
---|---|---|---|
Tesi PhD_Cavion Federica.pdf
Open Access dal 26/03/2023
Descrizione: Ph.D. tesi_Cavion Federica
Tipologia:
Tesi di dottorato
Dimensione
8.06 MB
Formato
Adobe PDF
|
8.06 MB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.