The vibration serviceability assessment of slender and/or lightweight pedestrian systems with high sensitivity to walk-induced effects is rather challenging. In the same way, laminated glass (LG) is used in buildings for structural applications but still represents a not well known and vulnerable material. For pedestrian LG systems, the characterization of dynamic and mechanical parameters may require specific procedures which do not adapt from other constructional typologies. Among others, the mass of pedestrians is generally high compared with LG structural components. Size and restraints in LG may also lead to more pronounced vibration effects. For existing LG systems, moreover, knowledge of residual capacity may be rather difficult. In this paper, an original uncoupled experimental investigation is proposed to numerically address the accuracy and potential of low-cost laboratory body measures for vibration analysis of LG slabs to support (or even replace) field tests or more complex calculation approaches. A total of 40 experimental records are taken into account, in the form of body center of mass (CoM) acceleration time histories for an adult volunteer walking on a rigid concrete slab and equipped with a single high-precision, Wi-Fi triaxial sensor based on micro electromechanical systems (MEMS) technology. Body CoM records are elaborated and used as input for finite element (FE) nonlinear dynamic analysis in the time domain (WL1) of two LG slab configurations (GS1 and GS2) with identical geometry but different boundaries. A third reinforced concrete slab of literature (CS3) is also investigated for further assessment. Numerical parametric results from a total of 120 WL1-based nonlinear dynamic analyses are compared with FE numerical results based on a conventional deterministic approach (WL2) to describe walk-induced effects, as well as towards past field experiments (GS2). The accuracy and potential of the proposed procedure are discussed.

Uncoupled Wi-Fi Body CoM Acceleration for the Analysis of Lightweight Glass Slabs under Random Walks

Bedon, Chiara
Membro del Collaboration Group
;
Noè, Salvatore
Membro del Collaboration Group
2022

Abstract

The vibration serviceability assessment of slender and/or lightweight pedestrian systems with high sensitivity to walk-induced effects is rather challenging. In the same way, laminated glass (LG) is used in buildings for structural applications but still represents a not well known and vulnerable material. For pedestrian LG systems, the characterization of dynamic and mechanical parameters may require specific procedures which do not adapt from other constructional typologies. Among others, the mass of pedestrians is generally high compared with LG structural components. Size and restraints in LG may also lead to more pronounced vibration effects. For existing LG systems, moreover, knowledge of residual capacity may be rather difficult. In this paper, an original uncoupled experimental investigation is proposed to numerically address the accuracy and potential of low-cost laboratory body measures for vibration analysis of LG slabs to support (or even replace) field tests or more complex calculation approaches. A total of 40 experimental records are taken into account, in the form of body center of mass (CoM) acceleration time histories for an adult volunteer walking on a rigid concrete slab and equipped with a single high-precision, Wi-Fi triaxial sensor based on micro electromechanical systems (MEMS) technology. Body CoM records are elaborated and used as input for finite element (FE) nonlinear dynamic analysis in the time domain (WL1) of two LG slab configurations (GS1 and GS2) with identical geometry but different boundaries. A third reinforced concrete slab of literature (CS3) is also investigated for further assessment. Numerical parametric results from a total of 120 WL1-based nonlinear dynamic analyses are compared with FE numerical results based on a conventional deterministic approach (WL2) to describe walk-induced effects, as well as towards past field experiments (GS2). The accuracy and potential of the proposed procedure are discussed.
feb-2022
Pubblicato
https://www.mdpi.com/2224-2708/11/1/10
File in questo prodotto:
File Dimensione Formato  
jsan-11-00010-v2.pdf

accesso aperto

Tipologia: Documento in Versione Editoriale
Licenza: Creative commons
Dimensione 5.2 MB
Formato Adobe PDF
5.2 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11368/3017071
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 4
social impact