In this paper we propose a discrete time model, based on dynamic programming, to price GLWB variable annuities under the dynamic approach within a stochastic mortality framework. Our set-up is very general and only requires the Markovian property for the mortality intensity and the asset price processes. We also show the validity of the bang-bang condition for the set of discrete withdrawal strategies of the model. This result allows to drastically reduce the computational time needed to search the optimal withdrawal in the backward recursive step of our dynamic algorithm and provides, as a by-product, an interesting contract decomposition.

Dynamic Withdrawals and Stochastic Mortality in GLWB Variable Annuities

Anna Rita Bacinello;Rosario Maggistro
;
2022

Abstract

In this paper we propose a discrete time model, based on dynamic programming, to price GLWB variable annuities under the dynamic approach within a stochastic mortality framework. Our set-up is very general and only requires the Markovian property for the mortality intensity and the asset price processes. We also show the validity of the bang-bang condition for the set of discrete withdrawal strategies of the model. This result allows to drastically reduce the computational time needed to search the optimal withdrawal in the backward recursive step of our dynamic algorithm and provides, as a by-product, an interesting contract decomposition.
978-3-030-99637-6
978-3-030-99638-3
File in questo prodotto:
File Dimensione Formato  
Bacinello Dynamic Withdrawals and Stochastic.pdf

non disponibili

Descrizione: capitolo con frontespizio e indice del libro
Tipologia: Documento in Versione Editoriale
Licenza: Copyright Editore
Dimensione 374.88 kB
Formato Adobe PDF
374.88 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
3017758_Bacinello Dynamic Withdrawals and Stochastic-Post_print.pdf

embargo fino al 12/04/2024

Tipologia: Bozza finale post-referaggio (post-print)
Licenza: Digital Rights Management non definito
Dimensione 752.02 kB
Formato Adobe PDF
752.02 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11368/3017758
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact