Probing the origin of r-process elements in the universe represents a multidisciplinary challenge. We review the observational evidence that probes the properties of r-process sites, and address them using galactic chemical evolution simulations, binary population synthesis models, and nucleosynthesis calculations. Our motivation is to define which astrophysical sites have significantly contributed to the total mass of r-process elements present in our Galaxy. We found discrepancies with the neutron star (NS-NS) merger scenario. When we assume that they are the only site, the decreasing trend of [Eu/Fe] at [Fe/H] > -1 in the disk of the Milky Way cannot be reproduced while accounting for the delay-time distribution (DTD) of coalescence times (∝t -1) derived from short gamma-ray bursts (GRBs) and population synthesis models. Steeper DTD functions (∝t -1.5) or power laws combined with a strong burst of mergers before the onset of supernovae (SNe) Ia can reproduce the [Eu/Fe] trend, but this scenario is inconsistent with the similar fraction of short GRBs and SNe Ia occurring in early-type galaxies, and it reduces the probability of detecting GW170817 in an early-type galaxy. One solution is to assume an additional production site of Eu that would be active in the early universe, but would fade away with increasing metallicity. If this is correct, this additional site could be responsible for roughly 50% of the Eu production in the early universe before the onset of SNe Ia. Rare classes of supernovae could be this additional r-process source, but hydrodynamic simulations still need to ensure the conditions for a robust r-process pattern.

Neutron Star Mergers Might Not Be the only Source of r-process Elements in the Milky Way

Simonetti P.;Matteucci F.
2019-01-01

Abstract

Probing the origin of r-process elements in the universe represents a multidisciplinary challenge. We review the observational evidence that probes the properties of r-process sites, and address them using galactic chemical evolution simulations, binary population synthesis models, and nucleosynthesis calculations. Our motivation is to define which astrophysical sites have significantly contributed to the total mass of r-process elements present in our Galaxy. We found discrepancies with the neutron star (NS-NS) merger scenario. When we assume that they are the only site, the decreasing trend of [Eu/Fe] at [Fe/H] > -1 in the disk of the Milky Way cannot be reproduced while accounting for the delay-time distribution (DTD) of coalescence times (∝t -1) derived from short gamma-ray bursts (GRBs) and population synthesis models. Steeper DTD functions (∝t -1.5) or power laws combined with a strong burst of mergers before the onset of supernovae (SNe) Ia can reproduce the [Eu/Fe] trend, but this scenario is inconsistent with the similar fraction of short GRBs and SNe Ia occurring in early-type galaxies, and it reduces the probability of detecting GW170817 in an early-type galaxy. One solution is to assume an additional production site of Eu that would be active in the early universe, but would fade away with increasing metallicity. If this is correct, this additional site could be responsible for roughly 50% of the Eu production in the early universe before the onset of SNe Ia. Rare classes of supernovae could be this additional r-process source, but hydrodynamic simulations still need to ensure the conditions for a robust r-process pattern.
2019
Pubblicato
File in questo prodotto:
File Dimensione Formato  
Côté_2019_ApJ_875_106.pdf

accesso aperto

Tipologia: Documento in Versione Editoriale
Licenza: Creative commons
Dimensione 4.75 MB
Formato Adobe PDF
4.75 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11368/3018477
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 140
  • ???jsp.display-item.citation.isi??? 120
social impact