The rapid quantification of antimicrobial agents is important for therapeutic drug monitoring (TDM), enabling personalized dosing schemes in critically ill patients. Highly sophisticated TDM technology is becoming available, but its implementation in hospitals is still limited. Among the various proposed techniques, surface-enhanced Raman scattering (SERS) stands out as one of the more interesting due to its extremely high sensitivity, rapidity, and fingerprinting capabilities. Here, we present a comprehensive review of various SERS-based novel approaches applied for direct and indirect detection and quantification of antibiotic, antifungal, and antituberculosis drugs in different matrices, particularly focusing on the challenges for successful exploitation of this technique in the development of assays for point-of-care tests.

The Role of Surface Enhanced Raman Scattering for Therapeutic Drug Monitoring of Antimicrobial Agents

Fornasaro S.
;
Sergo V.;Bonifacio A.
2022-01-01

Abstract

The rapid quantification of antimicrobial agents is important for therapeutic drug monitoring (TDM), enabling personalized dosing schemes in critically ill patients. Highly sophisticated TDM technology is becoming available, but its implementation in hospitals is still limited. Among the various proposed techniques, surface-enhanced Raman scattering (SERS) stands out as one of the more interesting due to its extremely high sensitivity, rapidity, and fingerprinting capabilities. Here, we present a comprehensive review of various SERS-based novel approaches applied for direct and indirect detection and quantification of antibiotic, antifungal, and antituberculosis drugs in different matrices, particularly focusing on the challenges for successful exploitation of this technique in the development of assays for point-of-care tests.
File in questo prodotto:
File Dimensione Formato  
chemosensors-10-00128 (2).pdf

accesso aperto

Descrizione: Articolo principale
Tipologia: Documento in Versione Editoriale
Licenza: Creative commons
Dimensione 4.41 MB
Formato Adobe PDF
4.41 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11368/3018523
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 11
  • ???jsp.display-item.citation.isi??? 11
social impact