Real-time communication (RTC) applications have become largely popular in the last decade with the spread of broadband and mobile Internet access. Nowadays, these platforms are a fundamental means for connecting people and supporting businesses that increasingly rely on forms of remote work. In this context, it is of paramount importance to operate at the network level to ensure adequate Quality of Experience (QoE) for users, and appropriate traffic management policies are essential to prioritize RTC traffic. This in turn requires the network to be able to identify RTC streams and the type of content they carry. In this paper, we propose a machine learning-based application to classify media streams generated by RTC applications encapsulated in Secure Real-Time Protocol (SRTP) flows in real-time. Using carefully tuned features extracted from packet characteristics, we train models to classify streams into a variety of classes, including media type (audio/video), video quality, and redundant streams. We validate our approach using traffic from over 62 hours of multi-party meetings conducted using two popular RTC applications, namely Cisco Webex Teams and Jitsi Meet. We achieve an overall accuracy of 96% for Webex and 95% for Jitsi, using a lightweight decision tree model that makes decisions based solely on 1 second of real-time traffic. Our results show that models trained for a particular meeting software have difficulty when used with another one, although domain adaptation techniques facilitate the transfer of pre-trained models.
Real-Time Classification of Real-Time Communications
Trevisan, Martino;
2022-01-01
Abstract
Real-time communication (RTC) applications have become largely popular in the last decade with the spread of broadband and mobile Internet access. Nowadays, these platforms are a fundamental means for connecting people and supporting businesses that increasingly rely on forms of remote work. In this context, it is of paramount importance to operate at the network level to ensure adequate Quality of Experience (QoE) for users, and appropriate traffic management policies are essential to prioritize RTC traffic. This in turn requires the network to be able to identify RTC streams and the type of content they carry. In this paper, we propose a machine learning-based application to classify media streams generated by RTC applications encapsulated in Secure Real-Time Protocol (SRTP) flows in real-time. Using carefully tuned features extracted from packet characteristics, we train models to classify streams into a variety of classes, including media type (audio/video), video quality, and redundant streams. We validate our approach using traffic from over 62 hours of multi-party meetings conducted using two popular RTC applications, namely Cisco Webex Teams and Jitsi Meet. We achieve an overall accuracy of 96% for Webex and 95% for Jitsi, using a lightweight decision tree model that makes decisions based solely on 1 second of real-time traffic. Our results show that models trained for a particular meeting software have difficulty when used with another one, although domain adaptation techniques facilitate the transfer of pre-trained models.File | Dimensione | Formato | |
---|---|---|---|
Real-Time_Classification_of_Real-Time_Communications.pdf
Accesso chiuso
Tipologia:
Documento in Versione Editoriale
Licenza:
Copyright dell'editore
Dimensione
4.2 MB
Formato
Adobe PDF
|
4.2 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
_Extension__Online_Classification_of_RTC_Traffic (13).pdf
accesso aperto
Descrizione: © 2022 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes,creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works. Link to publisher's version: https://ieeexplore.ieee.org/abstract/document/9825732
Tipologia:
Bozza finale post-referaggio (post-print)
Licenza:
Digital Rights Management non definito
Dimensione
4.07 MB
Formato
Adobe PDF
|
4.07 MB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.