In this study, we present a procedure to optimize a set of finite impulse response filter (FIR) coefficients for digital pulse-amplitude measurement. Such an optimized filter is designed using an adapted digital penalized least mean square (DPLMS) method. The effectiveness of the procedure is demonstrated using a dataset from a case study on high-resolution X-ray spectroscopy based on single-photon detection and energy measurements. The energy resolutions of the Kα and Kβ lines of the Manganese energy spectrum have been improved by approximately 20%, compared to the reference values obtained by fitting individual photon pulses with the corresponding mathematical model.
Data Analysis and Filter Optimization for Pulse-Amplitude Measurement: A Case Study on High-Resolution X-ray Spectroscopy
Valinoti, Bruno
;Florian Samayoa, Werner;Garcia, Luis Guillermo;Carrato, Sergio
2022-01-01
Abstract
In this study, we present a procedure to optimize a set of finite impulse response filter (FIR) coefficients for digital pulse-amplitude measurement. Such an optimized filter is designed using an adapted digital penalized least mean square (DPLMS) method. The effectiveness of the procedure is demonstrated using a dataset from a case study on high-resolution X-ray spectroscopy based on single-photon detection and energy measurements. The energy resolutions of the Kα and Kβ lines of the Manganese energy spectrum have been improved by approximately 20%, compared to the reference values obtained by fitting individual photon pulses with the corresponding mathematical model.File | Dimensione | Formato | |
---|---|---|---|
sensors-22-04776 (2).pdf
accesso aperto
Tipologia:
Documento in Versione Editoriale
Licenza:
Creative commons
Dimensione
1.09 MB
Formato
Adobe PDF
|
1.09 MB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.