The current COVID-19 pandemic has highlighted the importance of aerosol-based transmission of human pathogens; this therefore calls for novel medical devices which are able to sterilize contaminated aerosols. Here we describe a new laser device able to sterilize droplets containing either viruses or bacteria. Using engineered viral particles, we determined the 10,600 nm wavelength as the most efficient and exploitable laser source to be manufactured in a commercial device. Given the lack of existing working models to reproduce a human aerosol containing living microbial particles, we developed a new system mimicking human droplet formation and preserving bacterial and viral viability. This evidenced the efficacy of 10,600 nm laser light to kill two aerosol transmitted human pathogens, Legionella pneumophila and SARS-CoV-2. The minimal exposure time of <15 ms was required for the inactivation of over 99% pathogens in the aerosol; this is a key element in the design of a device that is safe and can be used in preventing inter-individual transmission. This represents a major advantage over existing devices, which mainly aim at either purifying incoming air by filters or sterilizing solid surfaces, which are not the major transmission routes for airborne communicable diseases.

A new laser device for ultra-rapid and sustainable aerosol sterilization

Vuerich, Roman;Martinelli, Valentina;Carletti, Tea;Zentilin, Lorena;Venturi, Vittorio;Marcello, Alessandro;Zacchigna, Serena
2022

Abstract

The current COVID-19 pandemic has highlighted the importance of aerosol-based transmission of human pathogens; this therefore calls for novel medical devices which are able to sterilize contaminated aerosols. Here we describe a new laser device able to sterilize droplets containing either viruses or bacteria. Using engineered viral particles, we determined the 10,600 nm wavelength as the most efficient and exploitable laser source to be manufactured in a commercial device. Given the lack of existing working models to reproduce a human aerosol containing living microbial particles, we developed a new system mimicking human droplet formation and preserving bacterial and viral viability. This evidenced the efficacy of 10,600 nm laser light to kill two aerosol transmitted human pathogens, Legionella pneumophila and SARS-CoV-2. The minimal exposure time of <15 ms was required for the inactivation of over 99% pathogens in the aerosol; this is a key element in the design of a device that is safe and can be used in preventing inter-individual transmission. This represents a major advantage over existing devices, which mainly aim at either purifying incoming air by filters or sterilizing solid surfaces, which are not the major transmission routes for airborne communicable diseases.
Pubblicato
https://www.sciencedirect.com/science/article/pii/S0160412022001994?via=ihub
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9060718/
File in questo prodotto:
File Dimensione Formato  
1-s2.0-S0160412022001994-main.pdf

accesso aperto

Tipologia: Documento in Versione Editoriale
Licenza: Creative commons
Dimensione 7.94 MB
Formato Adobe PDF
7.94 MB Adobe PDF Visualizza/Apri
1-s2.0-S0160412022001994-mmc1.pdf

accesso aperto

Descrizione: Supplementary data 1
Tipologia: Altro materiale allegato
Licenza: Creative commons
Dimensione 1.61 MB
Formato Adobe PDF
1.61 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11368/3025913
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact