Two microalgal species, Trebouxia jamesii and Trebouxia sp. TR9, were detected as the main photobionts coexisting in the thalli of the lichen Ramalina farinacea. Trebouxia sp. TR9 emerged as anew taxon in lichen symbioses and was successfully isolated and propagated in in vitro culture andthoroughly investigated. Several years of research have confirmed the taxon Trebouxia sp. TR9 tobe a model/reference organism for studying mycobiont–photobiont association patterns in lichensymbioses. Trebouxia sp. TR9 is the first symbiotic, lichen-forming microalga for which an exhaustivecharacterization of cellular ultrastructure, physiological traits, genetic and genomic diversity is available.The cellular ultrastructure was studied by light, electron and confocal microscopy; physiologicaltraits were studied as responses to different abiotic stresses. The genetic diversity was previouslyanalyzed at both the nuclear and organelle levels by using chloroplast, mitochondrial, and nucleargenome data, and a multiplicity of phylogenetic analyses were carried out to study its intraspecificdiversity at a biogeographical level and its specificity association patterns with the mycobiont.Here, Trebouxia sp. TR9 is formally described by applying an integrative taxonomic approach and ispresented to science as Trebouxia lynnae, in honor of Lynn Margulis, who was the primary modernproponent for the significance of symbiosis in evolution. The complete set of analyses that werecarried out for its characterization is provided.

Trebouxia lynnae sp. nov. (former Trebouxia sp. TR9): biology and biogeography of an epitome lichen symbiotic microalga

Muggia L;
2022-01-01

Abstract

Two microalgal species, Trebouxia jamesii and Trebouxia sp. TR9, were detected as the main photobionts coexisting in the thalli of the lichen Ramalina farinacea. Trebouxia sp. TR9 emerged as anew taxon in lichen symbioses and was successfully isolated and propagated in in vitro culture andthoroughly investigated. Several years of research have confirmed the taxon Trebouxia sp. TR9 tobe a model/reference organism for studying mycobiont–photobiont association patterns in lichensymbioses. Trebouxia sp. TR9 is the first symbiotic, lichen-forming microalga for which an exhaustivecharacterization of cellular ultrastructure, physiological traits, genetic and genomic diversity is available.The cellular ultrastructure was studied by light, electron and confocal microscopy; physiologicaltraits were studied as responses to different abiotic stresses. The genetic diversity was previouslyanalyzed at both the nuclear and organelle levels by using chloroplast, mitochondrial, and nucleargenome data, and a multiplicity of phylogenetic analyses were carried out to study its intraspecificdiversity at a biogeographical level and its specificity association patterns with the mycobiont.Here, Trebouxia sp. TR9 is formally described by applying an integrative taxonomic approach and ispresented to science as Trebouxia lynnae, in honor of Lynn Margulis, who was the primary modernproponent for the significance of symbiosis in evolution. The complete set of analyses that werecarried out for its characterization is provided.
File in questo prodotto:
File Dimensione Formato  
Barreno_etAl_Trebouxia_lynnae_BIOLOGY-mdpi_2022.pdf

accesso aperto

Tipologia: Documento in Versione Editoriale
Licenza: Creative commons
Dimensione 2.32 MB
Formato Adobe PDF
2.32 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11368/3027678
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 11
  • ???jsp.display-item.citation.isi??? 10
social impact