Isopods are terrestrial invertebrates that accumulate trace elements in large quantities, thus providing information on levels of soil contamination. However, the accumulation pattern seems to be species dependent. For this study, specimens of Philoscia affinis (Isopoda, Oniscidea) and soil samples were collected from both a protected area (site 1) and urban roadside (site 2) in the low plain of Friuli-Venezia Giulia (northeast Italy) to determine whether P. affinis could serve as a potential candidate for monitoring soil contamination. To do this, the following objectives were achieved: a) the level of trace elements (Al, Cd, Cu, Fe, Hg, Mn, Pb, Zn) were detected in soils and isopods; 2) the difference in trace elements accumulation was compared in the two sampling sites; 3) the bioaccumulation factor (BAF) was calculated for each element. With some exceptions, trace element concentrations were higher in both isopods and soil samples from the urban roadside compared to the protected area. Furthermore, except for Cd, Cu, and Zn, trace element levels were higher in the soil than in the isopod samples. The higher mean BAF values were recorded for Cd (6.169 and 6.974 for site 1 and 2, respectively), Cu (10.324 and 11.452 for site 1 and 2, respectively), and Zn (1.836 and 2: 1.943 for site 1 and 2, respectively), whereas BAF values <1 were recorded for the other elements. Philoscia affinis was found to be a potential candidate to monitor soil contamination as a macro-concentrator of Cu and Cd and a micro-concentrator of Zn.
First Insights Into Trace Element Accumulation by Philoscia affinis (Crustacea, Isopoda): a Novel Tracer to Assess Soil Contamination in Lowland Plains?
Bertoli M.Data Curation
;Dalla Nora V.Investigation
;Pizzul E.Conceptualization
2021-01-01
Abstract
Isopods are terrestrial invertebrates that accumulate trace elements in large quantities, thus providing information on levels of soil contamination. However, the accumulation pattern seems to be species dependent. For this study, specimens of Philoscia affinis (Isopoda, Oniscidea) and soil samples were collected from both a protected area (site 1) and urban roadside (site 2) in the low plain of Friuli-Venezia Giulia (northeast Italy) to determine whether P. affinis could serve as a potential candidate for monitoring soil contamination. To do this, the following objectives were achieved: a) the level of trace elements (Al, Cd, Cu, Fe, Hg, Mn, Pb, Zn) were detected in soils and isopods; 2) the difference in trace elements accumulation was compared in the two sampling sites; 3) the bioaccumulation factor (BAF) was calculated for each element. With some exceptions, trace element concentrations were higher in both isopods and soil samples from the urban roadside compared to the protected area. Furthermore, except for Cd, Cu, and Zn, trace element levels were higher in the soil than in the isopod samples. The higher mean BAF values were recorded for Cd (6.169 and 6.974 for site 1 and 2, respectively), Cu (10.324 and 11.452 for site 1 and 2, respectively), and Zn (1.836 and 2: 1.943 for site 1 and 2, respectively), whereas BAF values <1 were recorded for the other elements. Philoscia affinis was found to be a potential candidate to monitor soil contamination as a macro-concentrator of Cu and Cd and a micro-concentrator of Zn.File | Dimensione | Formato | |
---|---|---|---|
s12011-021-02573-w.pdf
Accesso chiuso
Tipologia:
Documento in Versione Editoriale
Licenza:
Copyright Editore
Dimensione
2.24 MB
Formato
Adobe PDF
|
2.24 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
s12011-021-02573-w-Post_print.pdf
Open Access dal 10/01/2022
Tipologia:
Bozza finale post-referaggio (post-print)
Licenza:
Digital Rights Management non definito
Dimensione
2.72 MB
Formato
Adobe PDF
|
2.72 MB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.