Different harmful events affecting high voltage overhead lines (OHLs) cause changes in the mechanical tension (tensile strength) of conductors. A mechanical monitoring of OHLs, therefore, can provide useful additional information (compared with the information provided by the widely used SCADA systems) about the power system state. The tension measurements combined with a few environmental measurements (air temperature, wind speed) can be used for an automatic (fast) detection of different events and for their approximate location along an OHL, reducing the impact of these events. Referring to 132-150 kV sub-transmission OHLs, this paper proposes some original algorithms, based on the mechanical monitoring of OHLs, for the automatic detection of the following events: conductor breaking, fall of trees on the conductors, ice/snow sleeve accretion on the conductors, strands breaking and galloping. The proposed algorithms require a limited number of sensors placed along the OHLs for measurements of the conductor tension and weather-related quantities.
Subtransmission overhead lines mechanical monitoring for fast detection of damaging events
Quaia, S
;Mauri, A;
2022-01-01
Abstract
Different harmful events affecting high voltage overhead lines (OHLs) cause changes in the mechanical tension (tensile strength) of conductors. A mechanical monitoring of OHLs, therefore, can provide useful additional information (compared with the information provided by the widely used SCADA systems) about the power system state. The tension measurements combined with a few environmental measurements (air temperature, wind speed) can be used for an automatic (fast) detection of different events and for their approximate location along an OHL, reducing the impact of these events. Referring to 132-150 kV sub-transmission OHLs, this paper proposes some original algorithms, based on the mechanical monitoring of OHLs, for the automatic detection of the following events: conductor breaking, fall of trees on the conductors, ice/snow sleeve accretion on the conductors, strands breaking and galloping. The proposed algorithms require a limited number of sensors placed along the OHLs for measurements of the conductor tension and weather-related quantities.File | Dimensione | Formato | |
---|---|---|---|
Official PAPER Open Access 20-7-2022.pdf
accesso aperto
Licenza:
Creative commons
Dimensione
802.05 kB
Formato
Adobe PDF
|
802.05 kB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.