It has long been known that regular physical exercise induces short and long term benefits reducing the risk of cardiovascular disease, diabetes, osteoporosis, cancer and improves sleep quality, cognitive level, mobility, autonomy in enderly. More recent is the evidence on the endocrine role of the contracting skeletal muscle. Exercise triggers the release of miokines, which act in autocrine, paracrine and endocrine ways controlling the activity of muscles but also of other tissues and organs such as adipose tissue, liver, pancreas, bones, and brain. The mechanism of release is still unclear. Neuromuscular electrical stimulation reproduces the beneficial effects of physical activity producing physiological metabolic, cardiovascular, aerobic responses consistent with those induced by exercise. In vitro, Electrical Pulse Stimulations (EPS) of muscle cells elicit cell contraction and mimic miokine release in the external medium. Here we show that, in cultured mouse myotubes, EPS induce contractile activity and the release of the myokine IL-6. Gadolinium highly reduces EPS-induced IL-6 release, suggesting the involvement of mechanical activated ion channels. The chemical activation of mechanosensitive Piezo1 channels with the specific agonist Yoda1 stimulates IL-6 release similarly to EPS, suggesting the involvement of Piezo1 channels in the control of the myokine release. The expression of Piezo1 protein in myotubes was confirmed by the Western blot analysis. To the best of our knowledge, this is the first evidence of a Piezo1-mediated effect in myokine release and suggests a potential translational use of specific Piezo1 agonists for innovative therapeutic treatments reproducing/enhancing the benefits of exercise mediated by myokines.

A preliminary study on the role of Piezo1 channels in myokine release from cultured mouse myotubes

Marina Sciancalepore;Gabriele Massaria;Federica Tramer;Paola Zacchi;Paola Lorenzon;Annalisa Bernareggi
2022

Abstract

It has long been known that regular physical exercise induces short and long term benefits reducing the risk of cardiovascular disease, diabetes, osteoporosis, cancer and improves sleep quality, cognitive level, mobility, autonomy in enderly. More recent is the evidence on the endocrine role of the contracting skeletal muscle. Exercise triggers the release of miokines, which act in autocrine, paracrine and endocrine ways controlling the activity of muscles but also of other tissues and organs such as adipose tissue, liver, pancreas, bones, and brain. The mechanism of release is still unclear. Neuromuscular electrical stimulation reproduces the beneficial effects of physical activity producing physiological metabolic, cardiovascular, aerobic responses consistent with those induced by exercise. In vitro, Electrical Pulse Stimulations (EPS) of muscle cells elicit cell contraction and mimic miokine release in the external medium. Here we show that, in cultured mouse myotubes, EPS induce contractile activity and the release of the myokine IL-6. Gadolinium highly reduces EPS-induced IL-6 release, suggesting the involvement of mechanical activated ion channels. The chemical activation of mechanosensitive Piezo1 channels with the specific agonist Yoda1 stimulates IL-6 release similarly to EPS, suggesting the involvement of Piezo1 channels in the control of the myokine release. The expression of Piezo1 protein in myotubes was confirmed by the Western blot analysis. To the best of our knowledge, this is the first evidence of a Piezo1-mediated effect in myokine release and suggests a potential translational use of specific Piezo1 agonists for innovative therapeutic treatments reproducing/enhancing the benefits of exercise mediated by myokines.
Pubblicato
https://www.sciencedirect.com/science/article/pii/S0006291X22010282
File in questo prodotto:
File Dimensione Formato  
Sciancalepore et al., 2022.pdf

accesso aperto

Tipologia: Documento in Versione Editoriale
Licenza: Creative commons
Dimensione 531.05 kB
Formato Adobe PDF
531.05 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11368/3028699
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact