In this work, we use the coherent WaveBurst (cWB) pipeline enhanced with machine learning (ML) to search for binary black hole (BBH) mergers in the Advanced LIGO-Virgo strain data from the third observing run. We detect, with equivalent or higher significance, all gravitational-wave (GW) events previously reported by the standard cWB search for BBH mergers in the third GW Transient Catalog. The ML-enhanced cWB search identifies five additional GW candidate events from the catalog that were previously missed by the standard cWB search. Moreover, we identify three marginal candidate events not listed in third GW Transient Catalog. For simulated events distributed uniformly in a fiducial volume, we improve the sensitive hypervolume with respect to the standard cWB search by approximately 28% and 34% for the stellar-mass and intermediate mass black hole binary mergers respectively, detected with a false-alarm rate less than 1/100 yr-1. We show the robustness of the ML-enhanced search for detection of generic BBH signals by reporting increased sensitivity to the spin-precessing and eccentric BBH events as compared to the standard cWB search. Furthermore, we compare the improvement of the ML-enhanced cWB search for different detector networks.

Search for binary black hole mergers in the third observing run of Advanced LIGO-Virgo using coherent WaveBurst enhanced with machine learning

Milotti, E;
2022-01-01

Abstract

In this work, we use the coherent WaveBurst (cWB) pipeline enhanced with machine learning (ML) to search for binary black hole (BBH) mergers in the Advanced LIGO-Virgo strain data from the third observing run. We detect, with equivalent or higher significance, all gravitational-wave (GW) events previously reported by the standard cWB search for BBH mergers in the third GW Transient Catalog. The ML-enhanced cWB search identifies five additional GW candidate events from the catalog that were previously missed by the standard cWB search. Moreover, we identify three marginal candidate events not listed in third GW Transient Catalog. For simulated events distributed uniformly in a fiducial volume, we improve the sensitive hypervolume with respect to the standard cWB search by approximately 28% and 34% for the stellar-mass and intermediate mass black hole binary mergers respectively, detected with a false-alarm rate less than 1/100 yr-1. We show the robustness of the ML-enhanced search for detection of generic BBH signals by reporting increased sensitivity to the spin-precessing and eccentric BBH events as compared to the standard cWB search. Furthermore, we compare the improvement of the ML-enhanced cWB search for different detector networks.
File in questo prodotto:
File Dimensione Formato  
Mishra&al_2022.pdf

accesso aperto

Descrizione: articolo principale
Tipologia: Documento in Versione Editoriale
Licenza: Digital Rights Management non definito
Dimensione 2.11 MB
Formato Adobe PDF
2.11 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11368/3028973
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 9
  • ???jsp.display-item.citation.isi??? 9
social impact