In the behavioral epidemiology (BE) of infectious diseases, little theoretical effort seems to have been devoted to understand the possible effects of individuals' behavioral responses during an epidemic outbreak in small populations. To fill this gap, here we first build general, behavior implicit, SIR epidemic models including behavioral responses and set them within the framework of nonlinear feedback control theory. Second, we provide a thorough investigation of the effects of different types of agents' behavioral responses for the dynamics of hybrid stochastic SIR outbreak models. In the proposed model, the stochastic discrete dynamics of infection spread is combined with a continuous model describing the agents' delayed behavioral response. The delay reflects the memory mechanisms with which individuals enact protective behavior based on past data on the epidemic course. This results in a stochastic hybrid system with time-varying transition probabilities. To simulate such system, we extend Gillespie's classic stochastic simulation algorithm by developing analytical formulas valid for our classes of models. The algorithm is used to simulate a number of stochastic behavioral models and to classify the effects of different types of agents' behavioral responses. In particular this work focuses on the effects of the structure of the response function and of the form of the temporal distribution of such response. Among the various results, we stress the appearance of multiple, stochastic epidemic waves triggered by the delayed behavioral response of individuals.

Multiple epidemic waves as the outcome of stochastic SIR epidemics with behavioral responses: a hybrid modeling approach

d'Onofrio, Alberto
2023-01-01

Abstract

In the behavioral epidemiology (BE) of infectious diseases, little theoretical effort seems to have been devoted to understand the possible effects of individuals' behavioral responses during an epidemic outbreak in small populations. To fill this gap, here we first build general, behavior implicit, SIR epidemic models including behavioral responses and set them within the framework of nonlinear feedback control theory. Second, we provide a thorough investigation of the effects of different types of agents' behavioral responses for the dynamics of hybrid stochastic SIR outbreak models. In the proposed model, the stochastic discrete dynamics of infection spread is combined with a continuous model describing the agents' delayed behavioral response. The delay reflects the memory mechanisms with which individuals enact protective behavior based on past data on the epidemic course. This results in a stochastic hybrid system with time-varying transition probabilities. To simulate such system, we extend Gillespie's classic stochastic simulation algorithm by developing analytical formulas valid for our classes of models. The algorithm is used to simulate a number of stochastic behavioral models and to classify the effects of different types of agents' behavioral responses. In particular this work focuses on the effects of the structure of the response function and of the form of the temporal distribution of such response. Among the various results, we stress the appearance of multiple, stochastic epidemic waves triggered by the delayed behavioral response of individuals.
2023
2022
Pubblicato
File in questo prodotto:
File Dimensione Formato  
0112-1.pdf

Accesso chiuso

Tipologia: Documento in Versione Editoriale
Licenza: Copyright dell'editore
Dimensione 8.1 MB
Formato Adobe PDF
8.1 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
0112-1-Post_print.pdf

Open Access dal 16/03/2023

Tipologia: Bozza finale post-referaggio (post-print)
Licenza: Digital Rights Management non definito
Dimensione 8.6 MB
Formato Adobe PDF
8.6 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11368/3029094
Citazioni
  • ???jsp.display-item.citation.pmc??? 2
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 6
social impact