In this paper we are interested in the approximation of fractional powers of self-adjoint positive operators. Starting from the integral representation of the operators, we apply the trapezoidal rule combined with a double-exponential transform of the integrand function. In this work we show how to improve the existing error estimates for the scalar case and also extend the analysis to operators. We report some numerical experiments to show the reliability of the estimates obtained.

Exponentially Convergent Trapezoidal Rules to Approximate Fractional Powers of Operators

Paolo Novati
2022-01-01

Abstract

In this paper we are interested in the approximation of fractional powers of self-adjoint positive operators. Starting from the integral representation of the operators, we apply the trapezoidal rule combined with a double-exponential transform of the integrand function. In this work we show how to improve the existing error estimates for the scalar case and also extend the analysis to operators. We report some numerical experiments to show the reliability of the estimates obtained.
2022
Pubblicato
https://link.springer.com/article/10.1007/s10915-022-01837-4
File in questo prodotto:
File Dimensione Formato  
s10915-022-01837-4.pdf

accesso aperto

Tipologia: Documento in Versione Editoriale
Licenza: Creative commons
Dimensione 463.92 kB
Formato Adobe PDF
463.92 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11368/3029200
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 3
social impact