Human knowledge develops through complex relationships between categories. In the era of Big Data, the concept of categorization implies data summa-rization in a limited number of well-separated groups that must be maximally and internally homogeneous at the same time. This proposal exploits archetypal analysis capabilities by finding a set of extreme points that can summarize entire data sets in homogeneous groups. The archetypes are then used to identify the best prototypes according to Rosch’s definition. Finally, in the geometric approach to cognitive science, the Voronoi tessellation based on the prototypes is used to define categorization. An example using a well-known wine dataset by Forina et al. illustrates the procedure.

Statistical Archetypal Analysis for Cognitive Categorization

Santelli, Francesco;
2019-01-01

Abstract

Human knowledge develops through complex relationships between categories. In the era of Big Data, the concept of categorization implies data summa-rization in a limited number of well-separated groups that must be maximally and internally homogeneous at the same time. This proposal exploits archetypal analysis capabilities by finding a set of extreme points that can summarize entire data sets in homogeneous groups. The archetypes are then used to identify the best prototypes according to Rosch’s definition. Finally, in the geometric approach to cognitive science, the Voronoi tessellation based on the prototypes is used to define categorization. An example using a well-known wine dataset by Forina et al. illustrates the procedure.
2019
9783030211578
File in questo prodotto:
File Dimensione Formato  
Santelli Statistical Archetypal Analysis.pdf

Accesso chiuso

Descrizione: capitolo con frontespizio e indice del volume
Tipologia: Documento in Versione Editoriale
Licenza: Copyright Editore
Dimensione 454.01 kB
Formato Adobe PDF
454.01 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Santelli+Statistical+Archetypal+Analysis-Post_print.pdf

Open Access dal 21/08/2021

Tipologia: Bozza finale post-referaggio (post-print)
Licenza: Digital Rights Management non definito
Dimensione 873.91 kB
Formato Adobe PDF
873.91 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11368/3029903
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact