In the modern age, electricity has risen in demand as slowly but steadily electric power becomes the most used form of energy to power our technological progress. Energy conversion and storage, in particular, is a field that has gained momentum since it became apparent that fossil fuel dependence would not be sustainable in the long term. After The United Nations Framework Convention on Climate Change (UNFCCC) and the third Conference of Parties (COP-3, culminating in the Kyoto Protocol) research on better materials to be employed in electrocatalysis has exploded, fuelled by environmental concerns. However, even if electrochemical devices, such as electrolyzers and fuel cells, offer better performances than current solutions (i.e. internal combustion engines), the need for expensive catalysts still hampers widespread adoption. In order to lessen the burden on current precious metals demand, research is focusing on carbon-based materials, non-noble metals and their composites. Moreover, nanotechnology represents a set of tools to boost (and finetune) materials’ properties for electrocatalytic applications, leading to a general reduction in weight and price of commercial catalysts. In this thesis, the use of advanced synthetic techniques as well as morphological, textural and (electro)chemical characterizations (e.g. TEM, XRD, XPS, EIS, GC) allowed to optimize various electrocatalysts for different applications at the forefront of electrocatalysis research. The dissertation focuses on the reduction of small molecules that can be found in the atmosphere (O2, N2 and CO2) to produce valuable chemicals (H2O2, NH3, hydrocarbons) or energy. Being able to fix these elements at room temperature and pressures (unlike current methods such as the Haber-Bosh process) from the gas phase could be instrumental to the implementation of a circular economy based on them. Finally, a particular focus of this thesis is the development of methods to streamline future catalytic tests and their application in electrolyzer setups resembling industrial conditions to have a more realistic image of their efficiencies in a “real case scenario” (i.e. presence of impurities, high currents, longer working times).

Nell’era moderna la richiesta di elettricità è cresciuta lentamente ma inesorabilmente, mentre è divenuta la forma di energia più importante per il progresso scientifico. I sistemi di accumulo e conversione sono in particolare oggetto di molti studi, sin dalle prime ratifiche di accordi internazionali sulla crisi climatica (per primi i protocolli di Kyoto). Data la natura limitata e “sporca” dei combustibili fossili (la loro combustione non solo libera CO2, ma anche polveri sottili e gas acidi come ossidi di zolfo e azoto), la ricerca si sta concentrando in altre tecnologie, come ad esempio le celle a combustibile e gli elettrolizzatori. Tuttavia, l’adozione di questi device elettrochimici è rallentata dal loro attuale alto costo, principalmente a causa dei catalizzatori. In particolare, le soluzioni commerciali attuali sfruttano principalmente metalli preziosi (come il platino). Il bisogno di catalizzatori più economici ha incentivato lo sviluppo di materiali a base di carbonio e metalli non preziosi. Le nanotecnologie hanno poi permesso lo sviluppo di metodologie e strumenti che permettono la sintesi di materiali nanostrutturati che presentano proprietà potenziate in elettrocatalisi. In questa tesi, l’uso di tecniche di sintesi avanzate, insieme alla caratterizzazione strutturale, superficiale, morfologica e (elettro)chimica ha permesso di ottimizzare degli elettrocatalizzatori per applicazioni all’avanguardia. In particolare, questi catalizzatori possono attivare la riduzione di piccole molecole presenti nell’atmosfera (O2, N2 e CO2) al fine di produrre composti con alto valore commerciale (H2O2, NH3 e idrocarburi) o energia. L’abilità di fissare tali elementi dall’atmosfera senza il bisogno di alte pressioni e temperature (come ad esempio richiede attualmente il processo Haber-Bosh) potrebbe risultare indispensabile per un futuro basato sull’economia circolare. Infine, un particolare obiettivo di questa dissertazione è stata la creazione di metodi per velocizzare la verifica di nuovi catalizzatori e la loro applicazione in elettrolizzatori/celle a combustibile in condizioni più realistiche e vicine all’applicazione industriale (presenza di inquinanti, alte correnti e lunghi tempi di utilizzo).

Elettrocatalizzatori nanostrutturati per l'attivazione di piccole molecole

FERRARA, MARCELLO
2022-09-16T00:00:00+02:00

Abstract

Nell’era moderna la richiesta di elettricità è cresciuta lentamente ma inesorabilmente, mentre è divenuta la forma di energia più importante per il progresso scientifico. I sistemi di accumulo e conversione sono in particolare oggetto di molti studi, sin dalle prime ratifiche di accordi internazionali sulla crisi climatica (per primi i protocolli di Kyoto). Data la natura limitata e “sporca” dei combustibili fossili (la loro combustione non solo libera CO2, ma anche polveri sottili e gas acidi come ossidi di zolfo e azoto), la ricerca si sta concentrando in altre tecnologie, come ad esempio le celle a combustibile e gli elettrolizzatori. Tuttavia, l’adozione di questi device elettrochimici è rallentata dal loro attuale alto costo, principalmente a causa dei catalizzatori. In particolare, le soluzioni commerciali attuali sfruttano principalmente metalli preziosi (come il platino). Il bisogno di catalizzatori più economici ha incentivato lo sviluppo di materiali a base di carbonio e metalli non preziosi. Le nanotecnologie hanno poi permesso lo sviluppo di metodologie e strumenti che permettono la sintesi di materiali nanostrutturati che presentano proprietà potenziate in elettrocatalisi. In questa tesi, l’uso di tecniche di sintesi avanzate, insieme alla caratterizzazione strutturale, superficiale, morfologica e (elettro)chimica ha permesso di ottimizzare degli elettrocatalizzatori per applicazioni all’avanguardia. In particolare, questi catalizzatori possono attivare la riduzione di piccole molecole presenti nell’atmosfera (O2, N2 e CO2) al fine di produrre composti con alto valore commerciale (H2O2, NH3 e idrocarburi) o energia. L’abilità di fissare tali elementi dall’atmosfera senza il bisogno di alte pressioni e temperature (come ad esempio richiede attualmente il processo Haber-Bosh) potrebbe risultare indispensabile per un futuro basato sull’economia circolare. Infine, un particolare obiettivo di questa dissertazione è stata la creazione di metodi per velocizzare la verifica di nuovi catalizzatori e la loro applicazione in elettrolizzatori/celle a combustibile in condizioni più realistiche e vicine all’applicazione industriale (presenza di inquinanti, alte correnti e lunghi tempi di utilizzo).
FORNASIERO, Paolo
34
2020/2021
Settore CHIM/03 - Chimica Generale e Inorganica
Università degli Studi di Trieste
File in questo prodotto:
File Dimensione Formato  
Smart nanostructured electrocatalysts for small molecules activation.pdf

embargo fino al 16/09/2023

Descrizione: Smart nanostructured electrocatalysts for small molecules activation
Tipologia: Tesi di dottorato
Dimensione 7.08 MB
Formato Adobe PDF
7.08 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11368/3030041
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact