We derive explicit formulae for the generating series of mixed Grothendieck dessins d’enfant/monotone/simple Hurwitz numbers, via the semi-infinite wedge formalism. This reveals the strong piecewise polynomiality in the sense of Goulden– Jackson–Vakil, generalising a result of Johnson, and provides a new explicit proof of the piecewise polynomiality of the mixed case. Moreover, we derive wall-crossing formulae for the mixed case. These statements specialise to any of the three types of Hurwitz numbers, and to the mixed case of any pair

Wall-crossing formulae and strong piecewise polynomiality for mixed Grothendieck dessins d'enfants, monotone and simple double Hurwitz numbers

Lewanski D
2018-01-01

Abstract

We derive explicit formulae for the generating series of mixed Grothendieck dessins d’enfant/monotone/simple Hurwitz numbers, via the semi-infinite wedge formalism. This reveals the strong piecewise polynomiality in the sense of Goulden– Jackson–Vakil, generalising a result of Johnson, and provides a new explicit proof of the piecewise polynomiality of the mixed case. Moreover, we derive wall-crossing formulae for the mixed case. These statements specialise to any of the three types of Hurwitz numbers, and to the mixed case of any pair
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11368/3031539
 Avviso

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 8
  • ???jsp.display-item.citation.isi??? ND
social impact