We analyze Chiodo's formulas for the Chern classes related to the r-th roots of the suitably twisted integer powers of the canonical class on the moduli space of curves. The intersection numbers of these classes with -classes are reproduced via the Chekhov-Eynard-Orantin topological recursion. As an application, we prove that the Johnson-Pandharipande-Tseng formula for the orbifold Hurwitz numbers is equivalent to the topological recursion for the orbifold Hurwitz numbers. In particular, this gives a new proof of the topological recursion for the orbifold Hurwitz numbers.

Chiodo formulas for the r-th roots and topological recursion

Lewanski D;
2017-01-01

Abstract

We analyze Chiodo's formulas for the Chern classes related to the r-th roots of the suitably twisted integer powers of the canonical class on the moduli space of curves. The intersection numbers of these classes with -classes are reproduced via the Chekhov-Eynard-Orantin topological recursion. As an application, we prove that the Johnson-Pandharipande-Tseng formula for the orbifold Hurwitz numbers is equivalent to the topological recursion for the orbifold Hurwitz numbers. In particular, this gives a new proof of the topological recursion for the orbifold Hurwitz numbers.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11368/3031540
 Avviso

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 20
  • ???jsp.display-item.citation.isi??? 19
social impact