Rapid detection of microorganisms in respiratory specimens is of paramount importance to drive the proper antibiotic regimen to prevent complications and transmission of infections. In the present study, the respiFISH® HAP Gram (-) Panel (miacom diagnostics GmbH, Duesseldorf, Germany) for the etiological diagnosis of hospital-acquired pneumonia was compared with the traditional culture method for the detection of major Gram-negative pathogens in respiratory specimens. respiFISH® combined the classical fluorescence in situ hybridization (FISH) technology with fluorescence-labeled DNA molecular beacons as probes. From September 2011 to January 2012, 165 samples were analyzed: the sensitivity and specificity were 94.39 and 87.93 %, respectively. Only six pathogens (3.6 %) were not identified with respiFISH®, while seven specimens (3 %) provided false-positive results. This beacon-based identification shortens the time to result by at least one work day, providing species-level identification within half an hour. Considering the high sensitivity and specificity and the significant time saving, the introduction of bbFISH® assays could effectively complement traditional systems in microbiology laboratories.

Direct identification of major Gram-negative pathogens in respiratory specimens by respiFISH® HAP Gram (-) Panel, a beacon-based FISH methodology

KONCAN, RAFFAELLA;
2015-01-01

Abstract

Rapid detection of microorganisms in respiratory specimens is of paramount importance to drive the proper antibiotic regimen to prevent complications and transmission of infections. In the present study, the respiFISH® HAP Gram (-) Panel (miacom diagnostics GmbH, Duesseldorf, Germany) for the etiological diagnosis of hospital-acquired pneumonia was compared with the traditional culture method for the detection of major Gram-negative pathogens in respiratory specimens. respiFISH® combined the classical fluorescence in situ hybridization (FISH) technology with fluorescence-labeled DNA molecular beacons as probes. From September 2011 to January 2012, 165 samples were analyzed: the sensitivity and specificity were 94.39 and 87.93 %, respectively. Only six pathogens (3.6 %) were not identified with respiFISH®, while seven specimens (3 %) provided false-positive results. This beacon-based identification shortens the time to result by at least one work day, providing species-level identification within half an hour. Considering the high sensitivity and specificity and the significant time saving, the introduction of bbFISH® assays could effectively complement traditional systems in microbiology laboratories.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11368/3031626
 Avviso

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 3
  • Scopus 9
  • ???jsp.display-item.citation.isi??? 9
social impact