The opposite-sense fault block rotation across the continental strike-slip faulting plays an important role in accommodating crustal deformation in the north of the East Iran orogen. This research constrains the post-Neogene kinematics of the NW-SE to E-W left-lateral transpressional zones at the northern termination of the N-S striking right-lateral Neh fault system in the East Iran orogen. Using two case studies, we analyzed the NW-SE Birjand splay and the E-W Shekarab transpression zone by analysis of satellite images, structural features, fault geometry and kinematics, GPS (Global Positioning System) velocities, fault- and earthquake-slip stress inversion, and paleomagnetic data. Our results show two distinctive regions of opposite-sense fault block rotations and with different rotation rates. As an asymmetric arc, the Birjand splay displays a transition from the prevailing N-S right lateral shear in the east to NW-SE left lateral transpression in the middle and E-W left lateral shear in the west. In the east, with clockwise fault block rotation, the N-S right lateral faults and the NW-SE oblique left-lateral reverse faults constitute push-ups through the restraining fault bends. In the west, with counterclockwise fault block rotation, the Shekarab transpression zone is associated with the duplex, pop-up, and shear folds. Our suggested kinematic model reveals that the N-S right-lateral shear is consumed on the left-lateral transpressional zones through the vertical axis fault block rotation. This led to an E-W shortening and N-S along-strike lengthening in the East Iran orogen. This research improves our understanding of how opposite fault block rotations accommodate India- and Eurasia-Arabia convergence in the north of the East Iran orogen. The suggested model has implications in the kinematic evolution of intra-plate strike-slip faulting through continental collision tectonics.

Late Cenozoic to Present Kinematic of the North to Eastern Iran Orogen: Accommodating Opposite Sense of Fault Blocks Rotation

Braitenberg C.
2022-01-01

Abstract

The opposite-sense fault block rotation across the continental strike-slip faulting plays an important role in accommodating crustal deformation in the north of the East Iran orogen. This research constrains the post-Neogene kinematics of the NW-SE to E-W left-lateral transpressional zones at the northern termination of the N-S striking right-lateral Neh fault system in the East Iran orogen. Using two case studies, we analyzed the NW-SE Birjand splay and the E-W Shekarab transpression zone by analysis of satellite images, structural features, fault geometry and kinematics, GPS (Global Positioning System) velocities, fault- and earthquake-slip stress inversion, and paleomagnetic data. Our results show two distinctive regions of opposite-sense fault block rotations and with different rotation rates. As an asymmetric arc, the Birjand splay displays a transition from the prevailing N-S right lateral shear in the east to NW-SE left lateral transpression in the middle and E-W left lateral shear in the west. In the east, with clockwise fault block rotation, the N-S right lateral faults and the NW-SE oblique left-lateral reverse faults constitute push-ups through the restraining fault bends. In the west, with counterclockwise fault block rotation, the Shekarab transpression zone is associated with the duplex, pop-up, and shear folds. Our suggested kinematic model reveals that the N-S right-lateral shear is consumed on the left-lateral transpressional zones through the vertical axis fault block rotation. This led to an E-W shortening and N-S along-strike lengthening in the East Iran orogen. This research improves our understanding of how opposite fault block rotations accommodate India- and Eurasia-Arabia convergence in the north of the East Iran orogen. The suggested model has implications in the kinematic evolution of intra-plate strike-slip faulting through continental collision tectonics.
File in questo prodotto:
File Dimensione Formato  
remotesensing-14-04048.pdf

accesso aperto

Tipologia: Documento in Versione Editoriale
Licenza: Creative commons
Dimensione 23.48 MB
Formato Adobe PDF
23.48 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11368/3034638
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 6
  • ???jsp.display-item.citation.isi??? 6
social impact