Pathological conditions such as infections, cancer, inflammation, or iatrogenic lesions, can hinder the cor-rect functionality of the ureter and its structural integrity. Several strategies for the regeneration of the ureter and the restoration of its functionality are available but the best strategy has not been reached yet. Among the proposed strategies, a promising one is the development of tubular scaffolds, in particular exploiting electrospinning technique. In this work, antibacterial electrospun polycaprolactone/rifampicin (PCL/Rif) membranes were prepared and characterized. The membranes are characterized by randomly oriented nanofibers with a homogeneous diameter, as determined by scanning electron microscopy. The mechanical characterization, performed with uniaxial tensile tests, showed a suitable stability over time and a proper deformability. The rifampicin release, investigated by UV spectrophotometry, showed a burst release in the first part of the experiment and a sustained release over time. The membranes are biocompatible and able to support the adhesion and proliferation of urotheliocytes. Moreover, PCL/Rif membranes showed an antibacterial activity against Escherichia coli and other bacterial strains belonging to the "ESKAPE" group. Considering the possibility to use the electrospinning for the production of tubu-lar scaffolds, the described membranes represent a promising starting point for the preparation of uret-eral scaffolds with antibacterial properties.(c) 2022 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Rifampicin-loaded electrospun polycaprolactone membranes: Characterization of stability, antibacterial effects and urotheliocytes proliferation

Musciacchio, L;Mardirossian, M
;
Guagnini, B;Raffini, A;Rizzo, M;Trombetta, C;Liguori, G;Turco, G;Porrelli, D
2022-01-01

Abstract

Pathological conditions such as infections, cancer, inflammation, or iatrogenic lesions, can hinder the cor-rect functionality of the ureter and its structural integrity. Several strategies for the regeneration of the ureter and the restoration of its functionality are available but the best strategy has not been reached yet. Among the proposed strategies, a promising one is the development of tubular scaffolds, in particular exploiting electrospinning technique. In this work, antibacterial electrospun polycaprolactone/rifampicin (PCL/Rif) membranes were prepared and characterized. The membranes are characterized by randomly oriented nanofibers with a homogeneous diameter, as determined by scanning electron microscopy. The mechanical characterization, performed with uniaxial tensile tests, showed a suitable stability over time and a proper deformability. The rifampicin release, investigated by UV spectrophotometry, showed a burst release in the first part of the experiment and a sustained release over time. The membranes are biocompatible and able to support the adhesion and proliferation of urotheliocytes. Moreover, PCL/Rif membranes showed an antibacterial activity against Escherichia coli and other bacterial strains belonging to the "ESKAPE" group. Considering the possibility to use the electrospinning for the production of tubu-lar scaffolds, the described membranes represent a promising starting point for the preparation of uret-eral scaffolds with antibacterial properties.(c) 2022 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
2022
Pubblicato
https://www.sciencedirect.com/science/article/pii/S026412752200908X
File in questo prodotto:
File Dimensione Formato  
Musciacchio et al 2022 Mater Des.pdf

accesso aperto

Descrizione: Testo principale
Tipologia: Documento in Versione Editoriale
Licenza: Creative commons
Dimensione 3.85 MB
Formato Adobe PDF
3.85 MB Adobe PDF Visualizza/Apri
Musciacchio et al 2022 Mater Des SI.pdf

accesso aperto

Descrizione: supplementary material
Tipologia: Altro materiale allegato
Licenza: Creative commons
Dimensione 1.08 MB
Formato Adobe PDF
1.08 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11368/3035918
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 5
social impact